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But where did that knowledge ex-
ist? Only in his own conscious-
ness, which in any case must soon
be annihilated. And if all others
accepted the lie which the Party
imposed — if all records told the
same tale — then the lie passed into
history and became truth. Who
controls the past,” ran the Party slo-
gan, ’controls the future: who con-
trols the present controls the past.’

George Orwell, 1984
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Introduction

When you, as a member of the audience, listen to an early Beethoven sonata, you will
automatically have a feeling for what accord or even motif will come next. A later
Beethoven string quartet, however, will contain more surprising elements and you will
not necessarily have a fixed expectation of the upcoming motif. Far more, this is true
for twelve-tone music of Arnold Schonberg that leaves the listener with uncertainty. In
fact, this unpredictability makes it difficult for the untrained ear to deal with this music,
while the very same property creates a challenge for music enthusiasts.

As neuroscientists, we naturally ask for the neural basis of this phenomenon. Sup-
porters of the efficient coding hypothesis state that neural systems are designed such
that redundancy is reduced and the neurons’ output is independent, conditioned on
the input. This perspective is opined by Attneave, Barlow, Laughlin and Olshausen
beside others. Specifically this implies that only those signal components are trans-
mitted that cannot be predicted by other signal components that are simultaneously —
or were previously — transmitted. Hence one can utilize available information to pre-
dict incoming signals and encode only those aspects of the incoming signal that were
unexpected. From this perspective, efficient coding can also be called predictive cod-
ing. Mostly, neuroscientists have applied these ideas on spatial prediction in the visual
system (Srinivasan et al., 1982; Rao and Ballard, 1999). In the auditory system, cer-
tain psychoacoustic observations can best be grasped by assuming a specific kind of
predictive coding (Ellis, 1996).

There is a second aspect of coding predictive information: Prediction may be re-
quired by the behaving organism. Consider the goalkeeper at a penalty shoot-out. The
football may not need more than 300 ms to reach the goal. Hence the goalkeeper has a
decisive advantage if he successfully predicts the correct corner by observing the move-
ment of the football player approaching the penalty spot. Rather than an exception,
restricted to high performance sports, this kind of prediction is a common property of
behavioral interactions between organisms. You will probably be acquainted with the
situation where you try to concentrate on your work but are perpetually distracted by
the tedious fly revolving around your head. If you, as an experienced fly catcher, want
to kill the fly, you will not try to slam the animal at its current position but where it will
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be at the moment your hands meet. In other words, the art of fly catching is based on
correctly predicting the fly trajectory. Even more, an evolutionary point of view sug-
gests that organisms are only interested in information that can influence future action.
Hence extracting predictive information may actually be not only a nice add-on but a
cornerstone of sensory processing. Such a point of view is advanced by theoretical neu-
roscientists, e.g., Naftali Tishby and William Bialek, and experimental neuroscientist,
e.g., Rodolfo Llinas, alike.

Both perspectives on predictive coding can be seen as complementary. However,
they lead to distinct kind of questions. The efficient coding perspective emphasizes the
question of data compression. The behavioral perspective, moreover, asks for extrac-
tion of the most predictive components of the incoming signal. Crucially, this allows
the interpretation that not all information that is predictive necessarily needs to be en-
coded. Rather one can postulate that only information that is needed to perform a task
is extracted. For example, when clapping your hands in order to grasp the fly, you need
to estimate the approximate future location of the fly up to an order of magnitude of the
size of your hands but not more. Indeed, why should an organism encode more infor-
mation than can be used for motor action? At the best, this is a waste of ressources, at
the worst it distracts from essential action. I suggest that an appropriate term for this
additional facet is sufficiency — or for our purposes sufficient coding.

Does this mean that the notion of optimality becomes negligible? Of course, not.
It will become clear that sufficient coding can mathematically be treated as a two-
dimensional optimality problem leading to an optimal curve instead to a single op-
timum. In one dimension, one tries to maximize the accuracy of the representation,
in the other dimension one tries to minimize the complexity of the model or coding
costs of the system. In fact, ultimate perfection in one dimension may actually mean
complete collapse in another dimension!. To emphasize this argument, I consider it
necessary to use a therewith concordant terminology, i.e., sufficiency.

In this work, we will use two approaches to study coding and processing of tempo-
ral patterns — or equivalently — dynamical systems. First, we will focus on a particular
sensory system, the auditory system of the grasshopper. We will analyze the processing
of behaviourally relevant communication signals in a small neural network. In particu-
lar, we will gain insight how some relevant information about the signal, i.e., the ratio
between alternating syllable and pauses, can be identified while getting rid of unwanted
information such as the overall time-scale of the signal. This invariance computation
can be viewed as a particular instance of sufficient coding in a setting where sensory
processing and behavioural output is tightly coupled.

Inspired by the study of this exemplary neural system, we try to find a mathemat-
ical framework for information processing of temporal patterns. Technically, we seek
to find a variable that maximizes the information that the past carries about the future
while keeping the information rate low. The problem requires the information-theoretic

An interesting illustration of this relation can be observed in economics. An exclusive focus on
maximization of economic throughput as measured by economic growth in a ressource and sink limited
environment leads to an overuse of natural assets with negative consequences for overall affluence.



treatment of the theory of dynamical systems. Effectively, the problem of efficient pre-
dictive coding can be mapped onto a particular instance of system identification be-
longing to the so-called subspace-based methods. Furthermore, the problem of finding
a sufficient system in the sense that only the most predictive components are encoded
can be identified with model reduction of dynamical systems.

In the following, we will provide a guideline of what to expect in the individual
chapters of this thesis.

In chapter 2, we will introduce the auditory system of the grasshopper and inves-
tigate the spike train of one specific interneuron in response to natural occuring and
artificially modulated mating signal. We will show that this neuron can encode one
particular temporal feature of the communication signal, pause duration, by intraburst
spike count. We will discuss this result in the context of burst coding in sensory sys-
tems.

In chapter 3, we postulate a putative mechanism that can read out this bursting
neuron in a time-scale invariant manner. This is a desirable property for poikilothermic
grasshoppers as their communication signal scale with outside temperature. Indeed,
behavioral response is rather dependent on syllable to pause ratio but not on absolute
syllable or pause duration.

In chapter 4, we model a minimal circuit simulating the spike train response of the
bursting neuron. The main feature of this circuit is an interplay between fast excitation
and slow inhibition. We show that such a model can also explain the response of neu-
rons in the auditory forebrain of songbirds to vocal communication signals. We discuss
the general properties of this ubiquitous circuit in auditory systems.

In chapter 5, we suggest an extended model of the grasshopper’s auditory system
that can detect communication signals comparably to results from behavioral experi-
ments. The bursting neuron is an integral part of this larger circuit. We show how the
validity of this model could be tested in behavioral experiments.

In chapter 6, we introduce some basic results from information theory in order to put
subsequent results into a broader perspective. From a neuroscientific point of view it is
important that source and channel coding, i.e., data compression and data transmission,
can be treated within one framework, similarly to information processing in sensory
systems. Furthermore rate-distortion theory provides a first insight into the tradeoff
between two contradicting information-theoretic objectives. With this background, we
introduce the information bottleneck method, the method of choice from hereon.

In chapter 7, we define predictive coding for a discrete-time stochastic process with
a Markov property, i.e., where — given the current state — previous states are irrelevant
for predicting future states. We show that an information-theoretic approach provides
an algorithm for extracting predictive components of the signal that is equivalent to
linear slow feature analysis, another method that can model receptive field properties
along the visual system. This result is important as it consolidates the idea of predictive
coding by relating predictive coding to other established methods.

In chapter 8, we introduce the theory of dynamical systems. First, important ter-
minology is clarified. Second, an overview over system identification methods with
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Figure 1.1: A short guide how to read this thesis.

emphasis on subspace-based identification is given. Third, a short primer on model
reduction is provided. Doing so, we obtain the groundwork and context to understand
the scope of the subsequent results.

In chapter 9, we extend the approach of chapter 7 to all time steps, by this moti-
vating the role of the state space as the information bottleneck between past and future
of dynamical systems. We also obtain a particular variant of subspace-based system
identification. In the main section, we directly apply the information bottleneck ansatz
to linear dynamical systems, denoting this as the past-future information bottleneck.
We derive necessary conditions for the so-called Hankel singular values such that the
reduced system lies on the optimal information curve trading model accuracy against
model complexity. We demonstrate the feasibility of the resulting algorithm chosing a
spring-mass system as an example.

In chapter 10, we jointly discuss the results from the grasshopper auditory system
and the past-future information bottleneck. We use an information bottleneck algorithm
to extract predictive features from grasshopper communication signals and compare
them with response properties of auditory neurons. The outlook illustrates the limita-
tions of past-future information bottleneck and suggests future directions of research.

tex
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Burst encoding of a communication
signal

Encoding the natural environment is the task of sensory systems. The potential data
load of the environment is huge, and the organism must employ specific strategies to
make sense of the incoming signals. These strategies are implemented into a set of
neural coding schemes. The basic unit of the neural code is the spike, i.e., an action
potential that may transmit information to other neurons. In sensory systems, spike
trains, sequences of action potentials, encode and represent the external world (Rieke
et al., 1996). Several coding schemes have been suggested. In rate coding, information
is carried with the firing rate, i.e., the number of spikes per time (Adrian, 1928). Rate
coding has enjoyed a prominent role in neurosciences for many decades. In agreement
with the rate coding perspective, it has been shown that neurons respond to the summed
activity of many synaptic inputs and act as integrators (Shadlen and Newsome, 1994,
1998). However, there is evidence that speed of sensory processing limits the time
available to read out spike trains (Oram and Perrett, 1992), limiting the feasibility of
rate codes (Gautrais and Thorpe, 1998). Hence, other scientists suggest that neurons
have to be thought as temporal coincidence detectors, emphasizing the need for precise
timing in the neural code (Abeles, 1990; Softky and Koch, 1993). Additionally, infor-
mation may be carried in the order of incoming single spikes in populations of neurons
(Thorpe et al., 2001; Gollisch and Meister, 2007). All these suggestions and results
require population codes. However, in some steps of sensory processing hierarchies the
information flow converges onto a smaller number of neurons, constituting a neural in-
formation bottleneck. Hence, a small number of neurons must adapt to the challenge of
encoding the behaviourally relevant features of the input signals. But how can a single
neuron rapidly transmit information on quantitative properties of an external stimulus?

Here, we suggest that bursts, i.e., a series of action potentials within a short time
scale, are ideally suited to rapidly transmit information in a quantitative manner. The
attractive property of bursts is that they can use two different codes simultaneously:
the identity of a particular event by the burst’s being and quantitative features by burst
duration or intraburst spike count.
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Figure 2.1: The auditory system of grasshoppers and locusts. Sound impinges on the
two tympana where the receptor neurons translate the sound into neural activity which
is forwarded to the metathoracic ganglion. Ascending neurons transmit information
upwards to the head ganglion. Some exemplary recordings of different levels in the
auditory network are shown. The scetch of the metathoracic ganglion is a courtesy
from Hartmut Schiitze, recordings are from Astrid Vogel (Vogel et al., 2005).

In this chapter, we will study a particular burst code. The system of our choice
is the grasshopper auditory system. As particular attractive features, this system A)
is sufficiently simple such that individual neurons can be analyzed and B) has neural
responses that can be related to the animal’s behaviour. Furthermore, C) the system is
also complex enough such that interesting computational strategies can be observed.

In detail, we will focus on the following questions. Can bursts be used to classify
temporal signals? What is the average signal preceding bursts with given spike count?
What (behaviorally relevant) temporal signal feature is encoded in bursts? How much
information is transmitted by each burst about the temporal signal? However, as we
will rely on the auditory system of the grasshopper also for subsequent chapters, we
first introduce anatomical and physiological characteristics of the auditory pathway
and properties of the behaving animal. Later on, we provide an extended discussion of
bursts in sensory systems.
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2.1 Grasshopper fundamentals

ANATOMY AND PHYSIOLOGY

The anatomy of the auditory system (Fig. 2.1) constrains the processing of sensory
inputs. A tympanic membrane is located on each side of the lateral abdomen. About
70 spiking receptor cells are attached to each membrane (Gray, 1960). Four different
kinds of receptor cells can be distinguished from their different response characteris-
tics. Three of these receptor types are most sensitive to low carrier frequencies, the
fourth responds most strongly to high carrier frequencies (Romer, 1976; Jacobs et al.,
1999). The transduction from acoustic signals to receptor response has been exten-
sively analyzed (Machens et al., 2001, 2003; Benda, 2002; Gollisch and Herz, 2005;
Rokem et al., 2006). As long as a signal contains frequencies in the appropriate range,
its amplitude distribution is well encoded by receptor neurons (Machens, 2002). The
receptor cells project into the metathoracic ganglion where information is preprocessed
before being sent into the head ganglion. As the highest neural processing stage, the
head ganglion integrates available information and gives rise to behavioural responses.

The metathoracic ganglion consists of four classes of interneurons, about 100 alto-
gether. Many have been morphologically and physiologically classified (Stumpner and
Ronacher, 1994; Stumpner, 1988; Marquart, 1985). The Ascending Neurons (ANs)
form a particularly important class. They have probably no direct input from receptor
neurons and are the only neurons projecting into the head ganglion. Some neurons
(ANI1, AN2) encode directional information, whereas others (e.g. AN3, AN4, ANG6,
AN11, AN12) are presumably involved in pattern recognition (Krahe et al., 2002). Be-
cause of their small number (approximately 20), this group constitutes a bottleneck for
the information transmission of the auditory system (Fig. 2.1).

In a behaviourally attractive song, one of the ascending neurons, the AN12 marks
the beginning of each syllable with a phasic burst (Stumpner et al., 1991). This study
also suggests that the number of spikes per syllable is positively correlated with in-
creasing pause duration. The burst is preceded by an inhibitory post-synaptic potential
(Stumpner and Ronacher, 1991). In general, AN12 is the most reliable neuron in-
fluenced by the syllable-pause structure and may account for part of the behavioural
response. Another ascending neuron, the ANG6, fires tonically in presence of syllables
(Stumpner, 1988). The AN3 and AN4 respond in a phasic tonic manner to stimuli and,
possibly, they encode onset steepness (Krahe et al., 2002) and are involved in another
behaviourally relevant process, gap detection (Stumpner et al., 1991).

(GRASSHOPPER BEHAVIOR

On the behavioural level, grasshoppers of the group Acrididae rely on species-specific
song recognition (Stumpner and von Helversen, 2001; Ronacher and Hennig, 2004)
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Figure 2.2: Temporal structure of acoustic stimuli. a) Sound pressure waves of 8
different calling songs from Chorthippus biguttulus males. b) Design of artificial songs
consisting of blockstimuli, rectangularly modulated noise.

and sound localization (Stumpner and Ronacher, 1994) for successful mating. Both
constitute difficult computational tasks which have to be accomplished by the auditory
system. In this thesis, we focus on song recognition and discrimination. Song recogni-
tion requires the decomposition of a stimulus into its constituents, possibly in both the
temporal and frequency domain. We investigate how these decomposed constituents
are efficiently encoded in later steps of auditory processing.

What are the specific features of grasshopper communication signals? Males of
many grasshopper species produce songs by rubbing their hindlegs against their fore-
wings. In these songs (Fig. 2.2a), syllables are followed by pauses, i.e., periods of
high and low amplitude modulations, respectively. Interestingly, the behavioural re-
sponse depends mainly on the ratio of syllable to pause length (von Helversen, 1972).
If this ratio is kept constant, the absolute length of one song-unit (syllable plus pause)
can vary more than threefold without changing the behavioural response of the female.
We analyze such time-scale invariant song recognition exemplifying a particular com-
putational task that needs to be solved by grasshoppers. Gap detection forms another
example: Male grasshoppers, with one hindleg missing, produce songs with gaps of at
most a few milliseconds within the syllables (von Helversen and von Helversen, 1998).
Females are able to detect those gaps and recognize them as an indicator of reduced
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Figure 2.3: Burst response contains information on grasshopper songs. a) 2 ex-
amplary male grasshopper songs, consisting of a sequence of alternating syllables and
pauses, episodes of loud and quiet amplitude respectively. b) Female grasshoppers re-
spond to a range of syllable and pause durations as tested with artifical block stimuli;
gray area: 1 animal at 20% positive response level. Adapted with permission from (von
Helversen and von Helversen, 1994). ¢) Amplitude modulation (AM) signal, enlarge-

ment of song in (a). d) Spike train response of AN12, 8 repetitions. Bursts mark onset
of syllables with 12 ms latency.

fitness.

2.2 Encoding pause duration by intraburst spike count'

We analyze recordings form one specific ascending neuron in the metathoracic gan-
glion, the AN12 neuron (Fig. 2.1), in n=6 individuals (Chorthippus biguttulus, n=3 and

I'This section is mostly based on a manuscript that is going to be submitted. Detailed methods can be
found in Appendix A.
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Locusta migratoria, n=3). Unless stated otherwise, data from Ch. biguttulus are shown.
However, the morphological and physiological characteristics are almost identical in
both grasshopper species (Stumpner and Ronacher, 1991; Wohlgemuth et al., 2007),
indicating a highly conserved functional role. Test stimuli are natural communication
signals that are rhythmically structured into syllables and pauses (Fig.A 2.2a+2.3a) and
artifical model songs (Fig. 2.2b). Syllable and pause durations have behavioral signifi-
cance as suggested by behavioral experiments with artificial stimuli (Fig.A 2.3b).

The AN12 neuron generates burst-like discharge patterns when stimulated by the
amplitude-modulated sound patterns of grasshopper calling songs (Fig.A 2.3c + d).
The intra-burst spike count (IBSC), i.e., number of spikes within a burst, is highly
reproducible from trial to trial but varies from syllable to syllable (Fig. 2.4a). Reflecting
the different time-courses of different songs (Fig. 2.2a), each song thus results in a
particular sequence of IBSCs (Fig. 2.4a). This signature can be used to discriminate
amongst songs. For example, for a sample with eight songs from one species, each
burst carries enough information to assign 40% of the responses to the correct song,
using the IBSC only (Fig. 2.4b). Accumulated over time, a 90%-hit rate is reached after
12 bursts, or about one second. The mutual information between spike train and song
identity increases similar to the probability of correct classification, approaching the
maximum of 3 bits (Fig. 2.4c). This astounding discrimination performance is similar
to that of grasshopper receptor neurons (Machens et al. 2003) although AN12 neurons
have a far lower overall firing rate and their exact spike timing has been neglected
for the present analysis. As IBSC allows one to discriminate songs even from the same
species, this measure must contain useful information about the detailed song structure.

What are the relevant features of the stimulus by which spike count within a burst is
determined? To answer this question, we construct the burst-triggered average (BTA),
the average stimulus preceding a burst with specific spike count (Fig 2.5). A shal-
low peak in stimulus intensity is sufficient to elicit 1 spike. For two and more spikes a
sharper stimulus peak, interpreted as a syllable onset, is preceded by a period of relative
quietness. Systematically, the spike count is higher when the period of relative quiet-
ness is longer and deeper. However, neither the slope nor the relative onset amplitude
do have a systematic influence on the spike count. To quantify these observations, we
correlated the spike count within a burst using different measures: a) quietness period,
b) relative onset amplitude, c) total period duration, d) minimal absolute amplitude, and
e) slope of the syllable onset.

Most of the spike count variance is explained by the preceding *pause’ in each cell:
69 4 15% of the variance given the external noise (p < 107>). For two animals, the cor-
relation is depicted in Fig 2.6a-b. The correlation is robust to changes in the amplitude
level of pause duration measurement (Fig 2.6¢). The distributions of spike counts and
pause durations have comparable shape (Fig 2.6d+f). Only the onset amplitude (27 +8,
p < 107°) and the preceding minimal amplitude (20 =9, p < 107>) can account for
some variance in all cells (e.g., one cell in Fig 2.7d) but have low semi partial correla-
tions. The other factors, including the slope, are not relevant (Fig 2.7a-c). Alltogether,
the 5 measures can explain 77 £ 15% of the variance that is caused by stimulus statistics
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Figure 2.4: Spike count within bursts is related to parameters in mating songs.
a) Response of an AN12 to 4 songs. The average number of spikes within a burst is
plotted against the position of that burst within the total response (burst index). Gray
lines depict upper and lower quartiles. b) Based on the spike count within bursts, in-
dividual spike trains are assigned to that song out of 8 songs which produces the most
similar neural response. The dotted line indicates correct classification based on indi-
vidual burst events alone. The solid line indicates correct classification cumulating over
previous burst events. Songs can be assigned correctly with probability > 0.9 after 12
bursts. Hence, the spike count within bursts alone is sufficient for discrimination. c)
Information about song identity as a function of the number of bursts. This is a strict
lower bound as only mutual information about correct/incorrect classification was used.

(p <1077).
Can we interpret the doubling of a spike count as a doubling of the pause duration?
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ulus. Burst-triggered average (BTA) for natural songs: the average stimulus preceding
a burst with given intraburst spike count. Higher spike count covaries with longer and
deeper pauses preceding the spike count.

This is true if the relation between spike count and pause duration can be fitted by a line
through the origin. We find a systematic but small deviation from this hypothesis. The
y-axis intercept lies at a pause duration of —1.1 2.1 ms. As the slope is at 14.6 2.5
ms per spike count, the deviation from the ’line-through-origin’ hypothesis does not
exceed the level of noise in encoding accuracy, i.e., the interquartile range of pause
duration at any spike count. As an illustration, the correlation is fitted by a dotted line
in Fig 2.6a+b. In conclusion, we can regard the observed spike-count pause-duration
curve as a good approximation of a line through the origin.

To ascertain that pause duration correlates with IBSC under a variety of stimulus
conditions, a second set of experiments was carried out (Ch. biguttulus, = 9), in which
the pause duration in artificial song was varied systematically. Here, the *pause’ is de-
fined as the distance between two subsequent block stimuli (Fig. 2.2b). This allows
to test the relation between spike count and pause duration under controlled conditions
excluding the influence of other song features. In response to such block stimuli neu-
rons burst at the beginning of each block. We found that the IBSC is linearly correlated
with the pause duration at high significance (Fig. 2.6e). Over 9 cells, the correlation co-
efficient is » = 0.87 4-0.09 at significance levels between p < 10~* and p < 107!, The
preceding syllable duration, and hence, the total period duration, does not contribute
significantly to the spike count. In two cells, we tested the role of different overall
amplitude levels but no clear effect could be identified.

Could the intra-burst spike count be used to reliably transmit information about
the rhythmic structure of the natural calling songs or does the trial-to-trial variability
blur the IBSC signal to strongly? To investigate this behaviorally relevant question, we
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calculated the mutual information between IBSC and preceding pause duration, using
the adaptive direct method (Nelken et al., 2005). Our data show that, on average, the
IBSC transmits 0.49 £ 0.24 bits about the preceding pause duration. Hence a single
burst would not convey sufficient information for a binary decision. However, as the
trial-to-trial IBSC variability is only weakly correlated from burst to burst (correlated
with p < 0.05 only if all cells are pooled together but not individually, turning point
test Kendall and Stuart (1966), for details see chapter 4), groups of subsequent bursts
could be used for transmitting information about average pause durations.

2.3 Why bursts?

Bursts have been described in a plethora of neural systems. Do they have properties that
make them qualitatively distinct from single spikes? We would like to put our insight
from the burst coding in the grasshopper neural system into a broader perspective and
review burst coding in sensory systems.

Let us define bursts phenomenologically as clusters of spikes. They can be identi-
fied in interspike interval distributions that are separated into two parts: short interspike
intervals for action potentials within bursts, and longer interspike intervals accounting
for single spikes or interburst intervals. Bursting cells can be classified A) in electro-
physiology according to their observed discharge pattern (Nowak et al., 2003) B) in
biophysics according to their burst generation mechanism (Gabbiani et al., 2001) and
C) in dynamical system analysis according to their dependence on parameters such as
applied current (Izhikevich, 2005). There is always an external activator, either an en-
vironmental stimulus or the state of the surrounding network. As we will see in the
next chapter, a burst can be shaped by the combination of fast and slow dynamics. In
this review, we chose to emphasize three aspects of bursting cells in sensory system:
Feature detection and encoding, information transmission, and output performance.

INFORMATION ENCODING BY BURSTS

The relevance for information transmission in sensory systems has been postulated for
thalamic neurons for a long time (Crick, 1984; Krahe and Gabbiani, 2004). Bursts
may encode the same information as single spikes but at higher signal-to-noise ratio;
or qualitatively different information; or may (additionally) be involved in extraction of
behaviorally relevent features; and intraburst properties can be used for graded codes.
First, we consider examples where bursts contain more information than single
spikes. In the primary auditory cortex, the carrier frequency of sound stimuli can be
estimated with increasing accuracy if bursts with higher spike count are used for decod-
ing (Eggermont and Smith, 1996). In a similar spirit, Livingstone et al. (1996) asked
which firing pattern optimally encodes visual information in V1 in awake monkeys.
The restriction to high-frequency discharges of two or more spikes (bursts) allowed a
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much better stimulus reconstruction of the visual input than the reconstruction from the
ensemble of all spikes. This implies that bursts can be explicitly used for efficiently
encoding and decoding stimuli.

Second, bursts may contain qualitatively different information than single spikes.
Place cells in the hippocampus represent the animal’s location in a given environment.
In such neurons, the rate of bursts depends strongly on orientation whereas the rate of
single spikes has almost no dependance on orientation (Muller et al., 1987). In complex
cells of V1, single spikes are correlated with the contrast of the stimulus whereas the
clusters of spikes are tuned for spatial frequency and orientation (Cattaneo et al., 1981).
Further studies also indicate that bursts can selectively encode some stimulus features
whereas others are represented by single spikes (Oswald et al., 2004; Alitto et al., 2005;
Lesica and Stanley, 2004).

Third, bursts may also be specifically involved in the detection of behaviourally rel-
evant events. In LGN relay cells, visually evoked bursts occur primarily at the onset
of fixation (Guido et al., 1995). These bursts can be regarded as wake-up calls indi-
cating the presence of a new kind of stimulus (Swadlow and Gusev, 2001; Sherman,
2001). In the subsequent tonic state of relay cells, coding is linear and precise stimu-
lus reconstruction at cortical level is enabled. In weakly electric fish, the stimulus can
be recovered accurately from primary afferent spike trains. The performance of down-
stream pyramidal neurons in encoding stimulus time courses is significantly worse than
in receptor cells. However, pyramidal cells specialized in upstrokes and downstrokes,
respectively, of electric field amplitudes, indicate their corresponding event by firing
bursts (Metzner et al., 1998).

Forth, intraburst properties can be used for graded codes. Modeling a pyramidal
cell of the weakly electric fish, it was demonstrated that bursts occur preferentially on
the increasing slope of the input current (Kepecs et al., 2002). Furthermore, within this
computational model the burst duration encodes the magnitude of the slope. Along this
line, it has been shown that burst interspike intervals in pyramidal cells are correlated
with amplitude and slope of stimulus upstrokes (Oswald et al., 2007). This code is re-
liable and precise and can be used to discriminate signals. Finally, burst duration also
encodes the optimality of a stimulus in the striate cortex (DeBusk et al., 1997; Martinez-
Conde et al., 2002) and primary auditory cortex (Eggermont and Smith, 1996). The op-
timality of a stimulus tells us to what degree the stimulus fits to the tuning properties,
e.g., the preferred stimulus orientation, of the neuron.
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Cellular Mechanisms underlying Burst Generation. In many cases, intrin-
sic cell properties are responsible for burst generation. In intrinsic bursters
the first spike in the burst is caused by the stimulation, but the subsequent
spikes are generated autonomously due to the intrinsic properties of the cell.
Sometimes the properties of specific neurons — such as the so-called chattering
neurons in cat neocortex (Gray and McCormick, 1996) — result in autonomous
firing even without initiation of an external stimulus. Possible mechanisms of
intrinsic bursting may be based on slow inward currents (Azouz et al., 1996),
Ca’* spikes (McCormick and Huguenard, 1992), Backpropagation (Lemon
and Turner, 2000) or NMDA channels (Pongracz et al., 1992). In particular,
specific Ca?* and cation currents can be activated (or deinactivated) at hyper-
polarized potentials. Hence, bursts can occur as rebounds after release from
inhibition. However, only little is known about pharmacological properties
in the metathoracic ganglion of grasshoppers, but see Sokoliuk et al. (1989).
Hence, modeling has to be based on another approach. Our phenemenological
model (chapter 4) will demonstrate that AN12 cell behaviour can be explained
by the specific temporal input distribution and no intrinsic-bursting mechanism
has to be assumed.

BURSTS INCREASE THE RELIABILITY OF INFORMATION TRANSMISSION

Single spikes are not necessarily reliably transmitted at synapses. Measuring the excita-
tory postsynaptic current (EPSC) elicited by stimulation of single presynaptic neurons
shows that transmission probability is less than one (Allen and Stevens, 1994). In fact,
in hippocampal CA1 synapses the majority of synapses has transmission probability
less than 0.1 (Hessler et al., 1993). However, spike-time dependent facilitation prop-
erties of synapses allow the increase of transmission probability and, hence, synapses
are thought to detect temporal firing patterns on short time scales. In fact, it has been
argued that bursts are the optimal input in this regard (Lisman, 1997; Thomson, 1997).

More detailed studies of paired pulses at single synapses of hippocampal cells have
revealed that facilitation occurs only if the first spike fails to release vesicles. If release
occurs on the first spike, the transmission of the second spike is depressed (Debanne
et al., 1996). This finding has led Lisman to postulate that every burst may cause the
same integrated response independent of spike count within bursts - bursts as a unit
of information (Lisman, 1997): Consecutive spikes induce exactly one transmission
event, whereas single spikes are filtered out. Taking this hypothesis to the limit, bursts
as a unit of information imply the irrelevance of single spikes in information transmis-
sion. Single spikes may be regarded as noise then. This is clearly not always the case.
Nonetheless, synaptic processes that cause spike-time dependent facilitation and de-
pression are significant factors in determining the neural code (Tsodyks and Markram,
1997, 1998; Izhikevich et al., 2003), and thus bursts — as factors causing facilitation
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and depression — are important. A variant of this hypothesis focusses on intraburst in-
terspike intervals (IBISI). Cells with certain IBISI may communicate selectively with
those postsynaptic cells that resonate with the associated intraburst spike frequency due
to synaptic facilitation and depression (Izhikevich et al., 2003).

Synaptic plasticity induced by bursts. The transmission of bursts to
downstream neurons may interact with synaptic facilitation and depression.
Whereas facilition is due to a range of presynaptic processes involving Ca>*-
dependent mechanisms (Kandel et al., 2000; Groffen et al., 2004; Manabe
et al., 1993), depression is thought to be caused by saturation and desensiti-
zation postsynaptically (Jones and Westbrook, 1996). Furthermore, postsy-
naptic bursts paired with presynaptic activity can induce long-term potentation
in excitatory synapses (Pike et al., 1999).

OUTPUT PERFORMANCE

Neurons are commonly read out by subsequent neurons. Plausibly, not all kinds of
codes can be readout by a specific decoding upstream neuron. Hence, in order to have
an upstream effect information must first be transformed from one coding space into
another coding space that can be understood by the subsequent neuron (Eguia et al.,
2000). Here, we want to point out that a burst code — either as a unit of information
or as a graded code — is particularly suited for forthright readout, e.g., by temporal
integration.

Bursts, thence, are a particularly suitable candidate code for the interaction between
input and output. That has already been demonstrated in the cricket auditory system
where interneurons, on the one hand encode salient stimulus features, on the other hand
predict behavioral responses (Marsat and Pollack, 2006). Older studies have already
highlighted that flight control in locusts is achieved via alternating patterns of bursting
neurons that in turn are modified by sensory input (Waldron, 1967; Camhi and Hinkle,
1972). Similarly, in the crab, gastro-pyloric receptors can modify the bursting of cells
in the stomatogastric ganglion generating rhythmic motor patterns (Harris-Warrick and
Marder, 1991).

Along the same line, bursts occur much more frequently when driven by natural
scenes than when driven by white noise, as demonstrated in the electroweak fish (Do-
iron et al., 2007) and in the mammal visual system (Lesica and Stanley, 2004; Lesica
et al., 2006). Hence, it can be argued that a burst code is activated when potentially
relevant information has to be forwarded. A mechanistic reason for this phenomenon
is that bursts are activated by modulations on slow time scales when there is sufficient
time for hyperpolarization between bursts (Doiron et al., 2007). In comparison, white
noise is dominated by high frequency components impeding hyperpolarization.
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2.4 Discussion

Our review shows that bursts can play a decisive role in encoding information, trans-
mitting information and giving rise to an effective output. In some studies concerned
with information transmission (Lisman, 1997; Swadlow and Gusev, 2001), the fine
structure of bursts conveys no specific stimulus-related information. In contrast, in the
electroweak fish it has been shown that intraburst interspike intervals carry information
on amplitude and slope of stimulus upstrokes (Oswald et al., 2007). Modelling studies
indicate that the spike count within bursts or a similar measure, the burst duration, can
encode the amplitude slope of sensory signals (Kepecs et al., 2002). Our investigation
of the bursting interneuron in the grasshopper auditory system demonstrates that also
intraburst spike count can encode information about stimulus features. In particular, we
have presented evidence that the AN12 encodes the pause duration between subsequent
syllables by spike count within bursts (Fig 2.6a-b,e), but not the slope (Fig 2.7a).

Burst duration, spike count within bursts and burst ISIs can all be used to encode
specific information. Their presence signals that something important is happening. In-
formation transmission via bursts is reliable. They have sufficient power to change the
subsequent output, e.g., the cortical (perceptual) state in mammals or the behavioral re-
sponse in invertebrates. Intrinsic bursting mechanisms allow flexibility in burst coding:
it may be sensitive to context information. Bursts, including distributed bursts, may be
regarded as the focal point between coding and effective change in behavioral states.

Crucially, these graded burst codes (electroweak fish, grasshopper) display an in-
terplay of different codes. The existence of bursts signals the presence of a pause in
a binary fashion, as a single spike would do. In fact, the interburst interval represents
the period duration of the communication signal. However, additionally the intraburst
spike count codes for the pause duration, thus, constituting an additional graded code.
By multiplexing both codes into one neural event a joint readout is enabled. Further-
more, the AN12 investigation also shows that a temporal feature with 40 ms duration
can be compressed into a code of 4 ms duration.

Bursts are also suited to cause significant change in the state of upstream neurons
or — for that matter — behavioral output. In thalamic relay cells, bursts occur more
often when driven with natural occuring statistics (Lesica and Stanley, 2004), indicat-
ing that bursts are suited to transmit relevant information. Bursting motor neurons are
substantially influenced by sensory input (Camhi and Hinkle, 1972). Already in the
sensory system, bursts can predict behavioral responses (Marsat and Pollack, 2006).
The burst code in the AN12 neuron also encodes a behaviorally relevant temporal sig-
nal, the pause duration. In the next chapter, we will investigate how the spike train
of this bursting interneuron is decoded such that an even higher-level property of the
communication signal is extracted.

SUMMARY AND OUTLOOK:

The grasshopper auditory system is the model system of our study. As a particular asset
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of this system, electrophysiological, anatomical and behavioral properties have been
characterized in detail. We focus on the processing of temporal patterns of grasshopper
communication signals in a bursting interneuron. We show that intraburst spike count
encodes a specific feature of the communication signal — pause duration. The role of
bursts in sensory system is discussed at full length. In the next chapter, we suggest a
plausible read-out of this bursting interneuron. tex
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Figure 2.6: Spike count scales with pause duration. a+b) Distribution of the pause
duration preceding a burst as a function of the burst spike count in two cells. The corre-
lation can be approximated by a line through the origin. ¢) The amplitude level for mea-
suring pause duration is determined by optimizing for the correlation between pause
duration and amplitude levels. The resulting correlation is not critically dependent on
the amplitude level setting: Varying the amplitude level which defines pause duration
shows that correlation between pause duration and spike count within burst is robust
with respect to level setting. d) Overall distribution of spike counts. e) In artificial
model songs consisting of block stimuli (see stimulus of Fig 2.2b), the pause duration
is systematically varied and spike count is measured over repeated trials, demonstrating
the correlation under controlled conditions. f) Overall distribution of pause durations
in natural songs.
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Figure 2.7: The relationship of spike count within bursts of one AN12 cell to other
stimulus parameters. a) The distribution of the onset slope as a function of the cor-
responding burst spike count in AN12. Indicated are median, lower and upper quartile
values. b) The distribution of the relative onset amplitude preceding a burst as a func-
tion of the burst spike count. c¢) The distribution of period durations preceding a burst as
a function of the burst spike count. d) Distribution of the absolute minimum amplitude
within a pause as a function of the subsequent burst spike count. A deeper pause leads
to higher spike count.
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Time-scale invariant decoding

Object recognition relies on the extraction of stimulus attributes that are invariant under
natural variations of the sensory input. Such stimulus variations include the size, orien-
tation or contrast of a visual object (Ito et al., 1995; Anderson et al., 2000; Rolls, 2000),
the strength of an odor (Stopfer et al., 2003; Wang et al., 2004), and the amplitude, pitch
or duration of a sound signal (Moore, 1997; Cariani, 1999; Bendor and Wang, 2005;
Benda and Hennig, 2007). A particular challenge arises when time-scale invariant fea-
tures of an acoustic signal are to be extracted as this computation involves ratios of
temporal quantities. In other words, stretched or compressed temporal sequences - such
as GOAL! or GGGOOOAAALLL!!! - need to be classified as equal. To calculate the
relative duration of two specific sound pattern within a longer stimulus the respective
duration of both components need to be measured and their ratio be computed. Us-
ing grasshopper communication (von Helversen and von Helversen, 1994) as a model,
we here demonstrate that this seemingly difficult task can be solved in real time by
a small neural system. As shown in the preceding chapter, an auditory interneuron
generates bursts of action potentials in response to natural calling songs and simplified
artificial stimuli that mimic the rhythmic syllable-pause structure of grasshopper calls.
The recorded in-vivo data show that bursts are preferentially triggered at syllable onset
and that the intra-burst spike count scales linearly with the duration of the preceding
pause. Integrated over a fixed time window, the total spike count thus contains informa-
tion about the syllable-to-pause ratio of the presented song. Since this ratio is species
specific, the information has a high behavioral value. The underlying neural coding
strategy is robust in that it does not require any division of time-dependent quantities.
The encoded time-scale invariant information can be read out easily by down-stream
neurons.

3.1 The puzzle of temporal sequence identification
Many animals use acoustic communication signals to find conspecific mates and judge

their reproductive fitness (Hauser and Konishi, 1999). How does a sensory system
recognize these behaviorally important spatial and temporal signal patterns? Rather

21
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than mapping external stimuli one-to-one into a neuronal response, sensory systems
selectively extract relevant information (Marr, 1980; Gabbiani et al., 1996). In the au-
ditory system, for example, it is well understood how interaural time differences can
be used to identify sound location with high resolution (Jeffress, 1948; Carr and Kon-
ishi, 1990). However, neural systems that represent temporal patterns are confronted
with an additional challenge: information that is spread over time needs to be pooled
into an explicit neuronal event, at the latest on the level of motor output. In contrast to
invariance computations in the visual system (Ito et al., 1995; Gabbiani et al., 2004),
such a computation of temporal sequences is poorly understood. This encoding and
decoding problem is aggravated when temporal patterns must be identified invariantly
to fluctuations of the time scale. Such time-warp invariant sequence recognition is
an important task for some auditory systems. In human speech, words are identified
with ease even when the speaking rate is varied (Klatt, 1976; Port and Dalby, 1982).
For speech recognition, Hidden Markov Models can identify speech successfully but
are limited in treating variable time duration in speech (Juang and Rabiner, 1991). In
grasshoppers, poikilothermic animals, the overall temporal scale of communication sig-
nals varies strongly with changing temperature conditions. In particular, sitting in the
shadow of a tree the grasshopper sings slower than when bathing in the sun. In fact, the
grasshopper Chorthippus biguttulus produces syllable-pause sequences that vary up to
300% without impairing the stimulus recognition even when the body temperature of
the receiving animal is unchanged (von Helversen and von Helversen, 1994). Previous
theoretical solutions to the general time-warp problem are based on subthreshold os-
cillations and coincidence detection (Hopfield, 1996; Hopfield et al., 1998), transient
synchronization (Hopfield and Brody, 2001), a synfire chain with two different sorts of
inhibition (Jin, 2004) and maximization of the variance of input currents (Barak and
Tsodyks, 2006). Some of these models use a set of neurons, e.g., with different decay
times, facilitating speech recognition at the expense of high computational costs. The
grasshopper, in contrast, needs time-warp invariant stimulus recognition only to reach a
binary decision when being courted with a mating song: To respond or not to respond.
Considering this low information rate of the output, no computationally expensive net-
work (in terms of number of neurons) is required. What kind of simple mechanism
solves this problem?

We have already seen in Chapter 2 that for grasshoppers, communication signals
play a decisive role in finding a potential mate (Jacobs, 1944; von Helversen and von
Helversen, 1997) and are thus directly related to reproductive success. Recall that mat-
ing songs of grasshopper males consist of alternating syllables and pauses which can
have strongly varying durations and that behavioral experiments with model songs,
consisting of block stimuli (interpreted as syllables) and intermediate pauses show that
the ratio between syllables and pauses is more relevant for behavioral response than
the absolute durations of syllables or pauses (von Helversen and von Helversen, 1994).
In fact, grasshopper songs as a function of temperature are not modulated on subseg-
ments but are globally scaled. Therefore we here investigate an instance of time-scale
invariance, a subset of time-warp invariances.
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Figure 3.1: Total spike count is time-scale invariant. a) Scetch of 2 block stimuli.
The lower sequence is obtained by scaling the upper sequence by a factor of 5/2. This
results in 4 instead of 10 bursts but each burst has 5 instead of 2 spikes. These two
effects compensate each other: the total spike count is constant. b) Response to two
natural songs with different pause durations. c) Total spike count plotted against the
number of syllables per second in 8 different songs. 6 animals are color-coded. In
average, no correlation can be found (R2=0.00 + 0.14). The indentation corresponds
to two songs that cause only weak firing within the measured period. However, those

two songs cause higher firing rates at the beginning of songs. The two examples of b)
are marked as circles.
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3.2 Time-scale invariant integration of the bursting in-
terneuron

Can the properties of the bursting interneuron AN12 and the putative pause duration
encoding mechanism be understood in the context of time-scale invariant behavioral
response? Time-scale invariance in this context means that the ratio between pause du-
ration (7pause) and period duration (Tper = Tpause + Tsyr) is kept constant. Hence, a first
hypothesis is that the grasshopper auditory system performs a division: % = const.
All necessary information for this operation is transmitted by the AN12: the spike count
within bursts encodes the pause duration; the first spike within a burst encodes the time
of the syllable onset and, hence, the interburst interval encodes the period. Of course,
the time of the syllable onset itself has no meaning for the organism; valuable informa-
tion is only in relative timing, i.e., in the interburst interval. A sophisticated read-out
mechanism could calculate the ratio between pause duration and period. However, such
a divisor might be very sensitive with respect to time scales and is not necessarily robust
against noise in spike count.

Instead consider as a second hypothesis that female grasshoppers measure the ratio
of the average pause to the average period within a time frame 7,.. This ratio depends
only on the total pause duration within the time frame and can be interpreted as a
moving average. Formally,

paise 1

—
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~ / pause(t)dt
period  Taec Jo

o —

where pause(t) = 1 if there is a pause at ¢ and O otherwise and pause and period
indicate the mean of the corresponding quantities. Such a moving average alters the
division into an integration operation. The experimental observations from the previous
chapter imply that the spike count within bursts in the AN12 neuron is proportional to
the preceding pause,

intraburst spike count ~ pause duration .

Hence, a plausible read-out neuron simply has to count spikes, by this, measuring the
total pause time within a relevant time frame. If syllable and pause durations were
multiplied by the same factor, this measure would stay constant (Fig 3.1a). Indeed,
measuring spike count over a long time-window, e.g., 500 ms in response to different
songs lead to similar results (Fig. 3.1b). Each AN12-neuron keeps the total spike count
approximately constant in response to different songs (Fig. 3.1c). Hence, the measured
response of AN12-neurons supports our second hypothesis that long-time integration
is sufficient for time-scale invariant decoding.

How large is the deviation in the spike count? We measured the maximal deviation
for a given song from the total mean average spike count over all songs, measured as
the percentage of the mean spike count, obtaining for the 6 cells (Fig.A 3.1c) 38 +
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14%A deviation; allowing for one outlier in each cell (one song eliciting negative
response), one obtains 22 £+ 5 % deviation. Applying this for natural songs, we assume
that the integration time is related to the minimal song duration eliciting behavioral
responses (von Helversen and von Helversen, 1994), i.e., about one second.

Temporal integration over such longer time scales is well known, for example, in
the electric fish (Oestreich et al., 2006). The plausibility of the proposed counting
mechanism for read out has been demonstrated in frogs that, similarly to grasshoppers,
also communicate with patterns of pulses and quiet intervals. Here, specific neurons in
the frog’s auditory midbrain integrate the number of acoustic pulses and respond only if
a minimal number of appropriate pulses and interpulse intervals arrive (Alder and Rose,
1998; Edwards et al., 2002). Furthermore, neurons in auditory cortex of mammals
integrate over a variety of timescales (10 ms, 100 ms, 1 s) (Nelken et al., 2003). Models
of invariance computation suggest that high-level invariances are detected by successive
spatial integration over low-level features (Riesenhuber and Poggio, 1999; Rolls and
Stringer, 2006). Our study relates both results by indicating that invariant recognition
of temporal patterns can be achieved by successive integration over longer time-scales,
1.e., pause integration over 10-100 ms and song integration over 1 s.

3.3 A mechanism for human speech recognition?

The integration of a temporal feature detector leads only to time-scale invariance for
periodic signals. In principle, such an integration could be used to identify piano war-
blers or other periodic music. It does not provide a straight-forward mechanism for
time-warp invariant representation of human speech. In contrast to grasshopper songs,
human speech recognition is a complex process based on the evaluation of spectral
components and a high number of temporal features. However, there is increasing
evidence that the peripheral human auditory system effectively utilizes syllable-sized
time-spans (~ 200 ms) of the audio signal (Hermansky, 1998), indicating the possibility
that integration participates in time-warp invariant speech recognition as well.

SUMMARY AND OUTLOOK:

Time-scale invariant recognition of communication signals is an important behavioral
task for grasshoppers. Here, we suggest a forthright read-out of the bursting interneuron
AN12 that is invariant to overall scaling in time. Instead of performing a division, the
hypothetical postsynaptic neuron could integrate the spike count. Total spike count
over a behavioral time window is an invariant of time-scaling. In chapter 5, we will
incorporate this model into a broader framework that can elucidate song recognition.

tex
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Fast excitation and slow inhibition: a
canonical circuit for auditory
processing?

In chapter 2, we have seen that spike count within bursts in the AN12 neuron encodes
preceding pause duration. But what is the underlying circuit causing this bursting re-
sponse? In the first part of this chapter, we explore a putative model based on differen-
tial equations that reproduces the neural bursting response to grasshopper communica-
tion signals. The differential equations can be interpreted in terms of a parallel neural
circuit consisting of a fast excitatory and a slow inhibitory input channel. In the second
part of this chapter, we compare this neural circuit, termed FexSin model, with the au-
ditory system of songbirds. Though the latter system is much more complex and can
discriminate between a large variety of bird songs, a similar kind of circuit can simu-
late neural response in the auditory forebrain phenomenologically and under a variety
of noise conditions. Furthermore, fast excititation and slow inhibition may be respon-
sible for precise firing in the auditory cortex of mammals. The seeming abundance of
this circuit is not unexpected as 1) the operation is very basic in nature and 2) can be
regarded as stimulus-induced adaptation and, hence, as a strategy to efficiently encode
information under noisy conditions.

4.1 The FexSin circuit

We introduce the fast excitation - slow inhibition (FexSin) circuit by modeling the re-
sponse of the AN12 neuron to natural communication signals. The goal is to optimize
spike train similarity between observed neural data and model data.

First, the signal input is processed by an adaptation current in the receptor neurons.
The resulting current is interpreted as an excitatory input for the AN12 neuron. The
inhibitory channel consists of an additional first-order low-pass filter of this receptor
response. The AN12 neuron is modeled as an integrate-and-fire neuron with both ex-

26
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Figure 4.1: Comparing the
model quality to intertrial
variability. ["-values measure
the degree of similarity be-
tween two spike trains given
o ] the same stimulus. I'-values
of the intertrial variability are
plotted against the I'-values of
the optimized model neuron.
The model quality increases
for neurons with lower inter-
trial variability, i.e., higher re-
liability.
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citatory and inhibitory input. In the first step, adaptation a(¢) current is a first oder
low-pass filter of the stimulus s(¢) with time constant T, (Equ. 4.1). This adapta-
tion current is then substracted from the sound stimulus s(¢) with weigthing factor A,
constituting the effective receptor response ry.c(t), (Equ. 4.2). A, € [0,1] can be
interpreted as the relative adaptation level.

Trecdz,—it) = _a(t> +S(t> (41)
rrec<t> - S(t) _Areca(t> (4.2)

The receptor response is forwarded to a putative interneuron that excites the AN12
model neuron, (Equ. 4.3). The inhibitory current r;,;(¢) is modeled as a first-order
low-pass filter of the receptor current (Equ. 4.4).

rexc(t) = rrec(t) (4.3)
Tinh dri:;;(t) = _rinh(l) + rexc(t) 4.4)

The effective input to the AN12 model neuron, rey(t) — Ajunrinn(t), consists of excita-
tory input and inhibitory input, weighted with A;,;,. This effective input serves as the
driving force of a leaky integrate-and-fire AN12 model neuron with membrane poten-
tial V(z):

dv(t
TrC di ) = —V(t) + Fexc(t) — AinnTinn(t)

The model neuron spikes whenever the voltage V() passes a certain threshold value V;,
and V(1) is reset to Vi for a refractory period determined by measuring the minimum
interspike interval of the observed data.
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Figure 4.2: Model simulating AN12 neuron response. To demonstrate the circuit
processing, a block stimulus is used as input. Receptor neurons are adapting (T,.c = 30
ms), emphasizing the first part of the syllable. The excitatory channel forwards this
signal to the AN12, whereas the inhibitory channel low-pass filters the signal. Both
channels are summed up to form the effective current which drives the leaky integrate
& fire neuron.

The quality of the model is measured by counting the normalized input spikes. De-
note with ngn12 and n,,,4.; the total number of spikes in the average recorded AN12-
neuron spike train and model spike train, respectively, and 7., the number of coin-
cidence spikes. Then the coincidence measure is defined as: I' = W. Model
parameters are chosen such that I" is maximized.

The average spike train is constructed across the repetitions of the recorded AN12
data: whenever there is a burst at a certain moment, the average spike count across all
8 repetitions in a time window of 2 ms is calculated; the burst time was determined
by the time of the first spike; all spikes within a burst were treated as occurring at the
time of the first spike. By this, spike trains are compared on basis of intraburst spike
count (IBSC) only but not on the temporal fine structure within bursts. This measure
is appropriate to find a model that reproduces IBSC response behavior. Bursts in the
recorded AN12-data and in the model spike train are counted as being coincident when
the burst times are not more than 2 ms apart, by this contributing to ngyj,c. Bursts
where the first spike is displaced by more than 2 ms are treated as different events.
If both spike trains are identical, I' = 1. If no coincident spikes occur, I' = 0. As a
reference value, we obtained the intertrial similarity by measuring the I"-value between
repetitions of the same song and its average spike train for each cell (range: 0.49 —0.84;
median=0.60) in the recorded AN12-data. To calculate the quality of the model, we
fitted all 5 parameters to the average spike train for 7 songs and calculated the I'-value
for the 8th song. We repeated this procedure for all songs and computed the mean I'-
value. Each cell was fitted with a parameter set. For the 6 cells, we obtained: range:
I' =0.33 —0.75; median: I"' = 0.53. That is at most 30% away from the reference
I"-value in each case. I'-values are plotted against each other in Fig. (4.1).



4.2. DYNAMICS DRIVING THE BURSTING INTERNEURON 29

Figure 4.3: Weak correlation between
subsequent spike counts. Plotted is the
expected normalized distribution of turn-
ing points. Individual cells (circles, n =
6) display a slight bias having an above
average number of turning points, but not
significantly. However, if one pools all
6 cells together, the upward shift proves
to be significant (diamond). This indi-
cates that spike-firing dependent adapta-
tion plays a weak role.

Significance at
5% level

4.2 Dynamics driving the bursting interneuron

By encoding the preceding pause duration, AN12 responses depend on the stimulus
history. We suggest two hypotheses that could explain the dynamics of this bursting
interneuron. The first hypothesis is that cell-intrinsic mechanisms like adaptation cur-
rents (Benda and Herz, 2003) play a role. The second hypothesis is that a preceding
circuit causes the phasic response.

Let us test the first hypothesis. If there were spike-firing dependent adaptation on
time scales longer than syllable duration, then we would expect a negative correlation
between the deviation from the mean of subsequent spike counts within bursts (Liu
and Wang, 2001; Chacron et al., 2004). Put more simply: Many spikes in one burst
would imply less spikes in the next burst. Using a turning point test to investigate
burst interval correlations (see text box below), we found, if at all, only a weak role of
spike-driven adaptation on long time scales ( = 80 — 150 ms). In each cell, there is
a small but not significant (at the 5% level) upward bias in turning points, indicating
negative correlations. However, if we pool all cells together, the bias is significant at
the 5% level (5807 turning points, expected: 5718 &=77). Crucially, spike-firing de-
penpent adaptation would imply scaling of IBSC with preceding period but not pause
duration. In agreement with this consideration, our efforts to model AN12 response
based on adaptation mechanism resulted in relatively low quality models. We conclude
that firing rate dependent adaptation of the AN12 at long time scales is not decisive for
AN12’s bursting behavior.
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Testing for adaptive currents in AN12. Adaptive currents lead to negative
correlations of subsequent intra-burst spike counts. We used the turning point
test (Brockwell and Davis, 1996) to find deviations from randomness in the
time series of subsequent inter-burst spike counts, by this checking for neg-
ative correlations. If a time series is purely random, two third of all points
are expected to be turning points. Taking boundaries into account, we expect
(2n—4)/3 turning points in a time series of n consecutive points. For large n,
turning points should be distributed as about N(2n/3,8n/45) in a random time
series.

According to the second hypothesis, the architecture of the neural system is responsible
for the bursting response. The data analysis showed that the driving force of AN12
excitation is the duration of the preceding quietness at syllable onset. We postulate that
this phenomenon can be understood by the FexSin model introduced in the last section.

In the following, we provide the details of the model. Here, the parameters of the
receptor neuron are fixed to A, = 0.5 and T,. = 30 ms which is within the range of
observed values (Benda, 2002). Our model does not crucially depend on the choice of
these parameters. The other five model parameters (the two inhibitory channel parame-
ters T, A, and the three integrate & fire parameters Ty, V;;, and Vi) are optimized
with respect to the model quality criterion. In each cell, the obtained parameters of
the model inhibitory neuron (T;,;, A;,n) Were in the same range. Hence, we fixed the
two values globally to 7;,, =40 ms and A;,;, = 1.3, but optimized the integrate & fire
parameters independently for each cell.

The model has 2 versions. The first is without receptor adaptation, the second
includes receptor adaptation. Without receptor adaptation, 48% of the spike count vari-
ance can be explained altogether (compare with 59% in the recorded data). 83% of
this explained variance can be attributed to the preceding pause (69% in the recorded
data). The model without adaptation fits well to recorded spike trains. However, when
tested with artificial block stimuli, the model generated up to 26 spikes per burst, far
more than its biological counterpart (~ 10 spikes). Unlike natural songs, block stimuli
stay at the same amplitude level. Thus, the high amplitude level in the second part of
the syllable leads to high spike count which would not be possible under natural song
condition.

The extended model, including receptor adaptation, is summarized in Fig. 4.2. This
model explains AN12 spike trains under natural stimulus conditions: the spike count
levels at 12 spikes for long pause durations in response to artificial block stimuli. In
the extended model, 45% of the spike count variance can be explained by stimulus
features, 36% alone by the preceding pause duration. In Fig. 4.4 we depicted the main
attributes of the complete model. Fig. 4.4a shows a similar burst triggered average as
in the neural data. The spike count distribution (Fig. 4.4b) is similar to the spike count
distribution of the AN12 neuron (Fig. 2.6d). The correlation between spike count and
pause duration is approximately reproduced (Fig. 4.4c). Note that the spike-count
pause-duration correlation is optimized on different threshold levels in real and model
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Figure 4.4: Response behavior of the model neuron. a) Burst triggered average. b)
Overall distribution of spike counts. c¢) Distribution of the preceding pause duration as
a function of the burst spike count. d) Overall distribution of pause durations. Compare
with Fig. 2.5 and Fig. 2.6.

cell, leading to a modified pause duration distribution (Fig. 2.6f + 4.4d). Fig. (4.5)
shows the model neuron’s spike train in comparison to real data, both responding in a
similar manner to the natural song.

The model cannot explain all the variance of neuronal data. Furthermore, the model
may not be sufficient to reproduce AN12 response under different stimulus paradigms.
However, the model features a simple, i.e., low dimensional, rationale of AN12 re-
sponses to natural and artificial songs.

To summarize: our model gives an account of the AN12 spike train with respect
to two different stimulus conditions: natural mating songs and artificial block stimuli,
based on the summation of fast excitation and slow inhibition. Other models may also
be plausible. For example, a cation channel deinactivated at hyperpolarization could
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300 ms 50 ms

Figure 4.5: Comparison of AN12 and model response on two different time scales,
left: 1300 ms, right: 150 ms

participate in producing a burst of spikes. However, as the spike count is proportional
to pause duration but not period, we would still rely on a inhibitory neuron marking
pause duration. Such a model, based on channel dynamics, would in fact increase the
complexity of our model.

4.3 Neural response in the auditory forebrain of song-
birds

Do other auditory systems have similar features as the suggested simple circuit for the
grasshopper system - based on fast excitation and slow inhibition? As this operation
is very simple and nonetheless useful for empasizing onsets we expect the answer to
this question to be positive. In this section, we focus on the auditory forebrain of
songbirds. The songbird auditory system is certainly much more complex than the
grasshopper one. In fact, songbirds can discriminate a wide variety of complex natural
sounds. Both vocal communication behavior and identified neural circuits that mediate
perception are fairly well understood (Konishi, 1985; Brainard and Doupe, 2002). It
has been suggested by anatomical and physiological studies that field L is involved
in signal discrimination (Vates et al., 1996; Lewicki and Arthur, 1996). Field L lies
between the thalamic relay nucleus and higher cortical areas such as HVc. Indeed, a
spike-timing based code of some single neurons in field L can be used for stimulus
discrimination matching behavioral accuracy (Wang et al., 2007).

For acoustic communication, sound sources of interest have to be separated from
other distracting acoustic stimuli and noise sources. This problem is particularly rele-
vant in the context of speech intelligibility. A variety of studies indicates that humans
can cope with "maskers" (for a review see Bronkhorst, 2000). This poses the question
how neurons in higher areas of auditory systems can reliably identify sound sources
in the presence of distractors. Kamal Sen and colleagues looked at the spike train re-
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Figure 4.6: Typical song motif of songbirds and neural response under a variety of
masker conditions. a) The pressure wave form of a target song motif. b) The neural
response of a single neuron in field L of songbirds. ¢) The average normalized spike rate
of this neuron color-coded in response to the song (first row) and to different amplitude
levels of added modulated noise (row 2-6). The y-axis indicates the difference in dB
between song and masker amplitude. d) Similar to ¢) but with unmodulated noise. e)
Similar to d) but with chorus masker. This figure is adapted from a presentation by
Professor Barbara Shinn-Cunningham.

sponse of cells in field L of songbirds under a variety of noise conditions. In particular,
three maskers with the same long-term spectral content but different short-term statis-
tics were used. (1) Modulated noise: Broadband noise with spectral profile matching
that of the average of random addition of three song motifs (so-called chorus), mod-
ulated by the envelope of a random chorus. (2) Noise: Broadband noise as specified
above, not modulated. (3) Chorus: Addition of three song motifs. For details of the
masker generation see Best et al. (2005).
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Figure 4.7: Simple model for the field L neurons and model response. a) The song
motif (a.1) has a particular power spectrum (a.2). For the model of the narrowband
neuron, the lowest 2 kHz are extracted from the power spectrum, indicated by the black
frame. The average amplitude within this spectrum is translated into the instanteneous
firing rate of an excitatory neuron (a.3). This firing rate is convoluted with an exponen-
tial function with 7;,;, into the firing rate of an inhibitory neuron (a.4). The joint input
of both neurons gives rise an output firing rate of the model neuron (a.5). b) Response
of model neuron to different noise condition as in Fig. 4.6.

A typical song motif of a songbird consists of a specific amplitude modulation (Fig.
4.6a), similar to the grasshopper song. However, in difference to the latter, songbirds
have a rich repertoire of different syllables. Furthermore, frequency bands vary across
the song motif. A particular neuron in field L responds with a firing rate following
the time course of the song up to a certain degree (Fig. 4.6b). In fact, this neuron is
a narrow-band neuron, responding only to a particular frequency band, hence, not fol-
lowing the amplitude modulation accurately at all times. When presented with different
maskers additional to the target song motif, the neuron maintains the response profile
for increasing amplitude levels of the masker. For the modulated noise condition, one
observes an addition of spikes. In contrast, for the broadband noise and chorus masker
condition, under conditions of high masker amplitude spike suppressions occurs for
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points in time where the firing rate was elevated for the reference (clean song) condi-
tion. How can this observation be explained?

In the following, we will present a model reproducing the observations above!. The
model will be similar to that one of the AN12 neuron. However, for the songbird model
no quantitative fit to recorded data is available and model quality cannot be provided.
On the other hand, the model displays similar features to the recordings in Fig. 4.6.

For the model, we first calculated the spectrogram (Fig 4.7a.2) of the target song
(Fig. 4.7a.1). As the recorded neuron is narrowband and responds best to low frequen-
cies, we extracted the average power in the frequency band between 0 — 2 kHz, denoted
similarly to the AN12 example by re(¢). The time course of an inhibitory neuron
rinn(t) is computed as in the AN12 example by Equ. (4.4), depicted in Fig. (4.7a.4).
The substraction of the inhibitory from the excitatory input gives rise to the firing rate
of the model neuron 7,540 (t) = rexc(t) — rinn(t) (Fig. 4.7a.5). The relative amplitude
of excitatory and inhibitory input is fixed to 1. Hence, the only free parameter is given
by the time constant T;,, of Equ. (4.4). We adjusted the time constant such that the
response of the model neuron has a comparable time course to the recorded neuron
(Fig. 4.6¢c-e). A time constant of T;,;, = 40 ms, the same one as chosen for the model of
the auditory processing in the grasshopper, leads to an appropriate performance (Fig.
4.7b).

The model neuron shows elevated firing rate (corresponding to additional spikes)
in some periods when modulated noise is added to the target song. On the other hand,
when broadband noise or chorus masker is added, firing rate is lowered for high noise
amplitude. These results correspond to the observed response of the recorded neuron.
Note that additional spikes in both recorded and model neuron occur preferentially
shortly before a syllable onset. From the perspective of the model, this obversation can
be explained as follows: A syllable with low-frequency content leads to subsequent
suppression for ~ 40 ms. Input of similar amplitude as the preceding syllable can only
be effective, i.e., eliciting additional spikes, after this period. Hence, additional spikes
occur preferentially at the end of quietness periods. Similarly, subsequent suppression
occurs preferentially in the second part of syllables. In contrast to the recorded neuron,
the overall firing is elevated in the model neuron in response to the second half of the
song motif. However, with respect to the simplicity of the model, overall performance
is impressive. Similarly, taking the frequency band between 0 — 8 kHz as input, the
model shows comparable performance in reproducing the firing rate of a broadband
neuron in response to the different masker conditions (not shown here).

The fast-excitation-slow-inhibition model predicts particular properties of the neu-
ral system that can be tested.

* Songbirds could be trained to discriminate songs and time-scaled versions of
the songs. If time-scaling brings the typical time-scale between syllables below
40 ms, discrimination capabilites should deteriorate.

* Noise could be added at specific positions within the song motifs. Noise snippets

I'This part resulted from my student project in Woodshole 2006.
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Figure 4.8: Fast excitation and slow inhibition can explain precise firing in ferret
cortex. a) Spectrotemporal receptive field in mouse auditory cortex, adapted from
Linden et al. (2003). b) Precise neural firing in the auditory cortex of ferrets, adapted
from Elhilali et al. (2004). c¢) Scetch of model that is consistent both with a) and b).

of, e.g., 10 ms should have different effects depending on their positions. If snip-
pets would be positioned in front of some (but not all) syllables, the song could
probably not be classified correctly anymore, as spike timing is shifted forwards
for some syllables. However, noise snippets succeeding syllables should have no
influence as they are suppressed by the preceding syllable. Note that in this case,
the subsequent period of quietness should still be sufficiently sustained.

In the next section, we briefly discuss one example from the mammalian auditory
system and then summarize the possible functions of the FexSin-circuit.

4.4 Sluggish response but precise firing?

How can single neurons integrate information on long time scales but yet maintain a
rapid and precise response? This question is the so-called resolution-integration para-
dox (deBoer, 1985). Recent studies try to explain this phenomenon (for a review see
Nelken, 2004).

The spectrotemporal receptive field (STRF) is a generalization of the spike triggered
average (STA) including the spectral domain. Typical cells in the mammalian auditory
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cortex respond to a specific frequency band and simple temporal envelope with time
constants of the order of 30 ms. An example from the mouse auditory cortex is given
in Fig. 4.8a. STRFs in field L of the songbird have very similar properties (Sen et al.,
2001). However, the same kind of cells show very precise firing in response to stimulus
onsets and other transients. In particular, when presented with both slow and fast mod-
ulations, auditory cells fire with a precision on the ms timescale (4.8b). Note that fast
modulations alone are not sufficient to elicit precise firing: slow modulated envelopes
gate the expression of fine structure (Elhilali et al., 2004).

A possible explanation of the integration-resolution paradoxon is given by Elhilali
and colleagues (Elhilali et al., 2004). In phenomenological models they show that either
synaptic depression or feedforward inhibition (with time constant T = 65 ms) preceded
by fast excitation leads to comparable neural response in model neurons (Fig. 4.8). Of
course, the latter corresponds to the model circuit for the grasshopper and the songbird
auditory system presented here.

4.5 Discussion: a canonical circuit for temporal pro-
cessing?

We have seen that a seemingly simple circuit based on fast excitation and slow inhibi-
tion may the basis of a variety of phenomena in auditory processing:

* Fast excitiation and slow inhibition lead to a graded code (intraburst spike count)
of a temporal feature (pause duration) that is a significant component of grasshop-
per communication signals.

* The circuit emphasizes temporal patterns in the presence of noise and can repro-
duce some properties of neural responses in the presence of maskers in songbirds.
Song motifs have similar statistics to speech, and hence, such a circuit may also
be supportive in elucidating how humans can understand acoustic signals in pres-
ence of noise.

* Feedforward inhibition accounts for slow receptive fields but precise firing of
cells in the auditory cortex of mammals.

Is such a circuit supported by anatomical and physiological evidence? In the grasshop-
per auditory system, anatomical studies suggest that the AN12 neuron receives both
excitatory and inhibitory input (Sokoliuk, 1992), in particular the TN1 2 and the UGN
neurons are candidates for excitatory, the BGN1 and the UGN4 candidates for in-
hibitory input for the AN12. In field L of songbirds, local GABAergic interneurons
driven by feedforward excitation from the thalamus seem to mediate delayed inhibi-
tion (Muller and Scheich, 1987). In the auditory cortex of primates delayed inhibition
(2-4 ms) has been measured with intracellular recordings (Cruikshank et al., 2002; Tan

2TN1 is known to be GABAergic (Sokoliuk et al., 1989)
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et al., 2004). The inhibitiory conductance lasts up to 50-100 ms (Wehr and Zador,
2005). We conclude that anatomical and physiological studies support the hypothesis
of fast-excitation-slow-inhibition circuits.

This observed behavior of auditory neurons is only a necessary but not a sufficient
condition to demonstrate the existence of a neural circuit with fast excitatory and slow
inhibitory input. Synaptic depression and even intracellular adaptation may lead to
similar results. However, at least in the AN12 neuron, firing-rate-dependent adaptation
doesn’t have a significant effect on the dynamics.

SUMMARY AND OUTLOOK:

What kind of circuit is responsible for the bursting response of the interneuron AN12?
Here, we suggest a minimal circuit based on an interplay between fast excitation and
slow inhibition (FexSin), thus marking the syllable onset but keeping the dependency
on preceding pause duration. Electrophysiological and anatomical experiments are
needed to authenticate this claim. We show that such a circuit can, in principle, also
model neural response of auditory midbrain neurons under a variety of conditions. We
discuss further results from the ferret cortex supporting the hypothesis that the FexSin
circuit is an integral element of auditory systems.
tex
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Song feature integration sufficient to
account for behavioral response

We have studied a burst coding mechanism, modeled a plausible circuit for the AN12
neuron and hypothesized that the integration of the AN12 over a sufficiently long time
is time-scale invariant. In this chapter, we try to relate this potential AN12 read-out
mechanism to observed behavioral song classification.

5.1 Introduction

What syllable-pause combinations do grasshoppers prefer? With artificial model songs,
one can test for appropriate syllable-pause combinations. An oval-shaped curve de-
scribes the syllable-pause combinations eliciting a behavioral response (Fig. 5.1). Vari-
ation across animals is low for high syllable-pause ratios and high for low syllable-
pause ratios.

Is the read-out of the AN12 sufficient to explain this behavioural response of female
grasshoppers? The AN12 can explain the time-scale invariant output: If the sum of
spikes is within the range of a certain target value, the behavioural response is positive,
otherwise negative. However, the dependence on the ratio between syllable and pauses
can be observed within a certain range only and stops beyond a certain period dura-
tion, i.e., syllable duration beyond 140 ms cannot elicit a response anymore (Fig 5.2).
Additionally, a classification based on AN12 integration would require a non-trivial
post-AN12-synaptic computation: A simple thresholding would require a sufficient
total spike count and therewith sufficient pause durations. However, very high spike
count implying very long pause duration should be suppressed. To account for this,
additional feedback inhibition or similar mechanisms would be required. Instead, we
suggest that the AN12 is complemented by other neurons constituting a feed-forward
network where the read-out is based on integration and thresholding.

We put forward that the ascending neurons perform a parallel detection of relevant
song features and that the head ganglion is evaluating the incoming spike trains to clas-
sify the stimulus. We construct a conceptual and numerical model in which 3 stimulus

39
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Figure 5.1: Female Chor-
thippus  biguttulus  be-
havioural response. The
dashed curve depicts the
area of syllable and pause
values 1n artificial model
songs to which female
grasshoppers respond (one
animal, 20% level). The
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features are individually integrated over a fixed time window, thus calculating a moving
average, and positively classified if the integration value crosses a certain threshold. If
all 3 responses are positive, the overall motor response is permitted — corresponding to
a logical AND operation.

5.2 Three thresholding operations

The 3 features to be integrated are overall pause duration, overall syllable duration and
the syllable frequency (period count). The read-out neurons respond if the absolute
integration passes a threshold value. Each thresholding segments the syllable-pause
space into permissible and non-permissible areas, effectively constituting a triangle
(Fig 5.2). As indicated by the arrows, only values inside the triangle lead to positive
grashopper response. In detail, a) the overall integration of pause durations within
T;.. must have a sufficiently high value, allowing syllable-pause combination above
the pause-duration line. Also, b) the overall integration of syllable duration within 7y,
must cross a certain threshold, corresponding to syllable-pause combination below the
syllable-duration line. Furthermore, to limit the observed permissive values of absolute
period durations, we introduced the integration of the number of syllable onsets, for
clarity called period count. The period counting within 7., and thresholding allows
only values to the left of the period-count line. Note that the slope of the period count
line is fixed by requiring a constant sum of pause and syllable durations. All three
features combined give a triangular range of admissable syllable-pause combinations
that is related to the observations in behavioral experiments.
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Figure 5.2: The integration and thresholding hypothesis accounting for behavior
of Chorthippus biguttulus. Behavioral data is plotted as a reference as in 5.1. A possi-
ble neuronal read-out mechanism would integrate over certain song features, i.e., total
pause duration, total syllable duration and number of syllables and respond positively
if all features cross threshold levels, constituting a triangle in the syllable-pause space.
Threshold passing corresponds to getting inside the triangle as indicated by the arrows.
The grey area depicts the read-out of a numerical model of ascending neurons (ANs).
The AN12 measures pause duration, a tonically responding neuron measures syllable
duration (AN6) and a strongly adapting neuron (T = 3 ms) is responsible for the down-
slope at high syllable durations. For details see Fig. 5.3.

5.3 A minimal neural circuit for song classification

The model circuit is depicted in Fig 5.3. Altogether, all information needed is transmit-
ted via ascending neurons, whereas the integration and thresholding is performed at the
subsequent postsynaptic read-out. As we have shown above, the pause integration is
done by the summation of the AN12 spike train. For this part of the model, we keep the
AN12 circuit with all parameters as described in chapter 4. For syllable integration, an-
other ascending neuron is needed that responds tonically to syllables, i.e., proportional
to syllable duration, and can then be summed up. Effectively, such a neuron simply
counts syllable duration. The AN6 is a candidate neuron firing with constant firing rate
in response to syllables (Stumpner, 1988). Furthermore, an ascending neuron that re-
sponds phasically to syllable onsets (with short time constant, €.g., Tppa5ic = 3 ms, and
relative adaptation level at, e.g., 0.1 of the starting value) can be used as an input for a
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pulse counter. Here, the finite relative adaptation level is responsible for the smoothing
the upper edge of the triangle range of admissable values: If syllable duration is substi-
tuted with pause duration, spike count will slightly decrease and lower the slope of that
edge. No concrete evidence exists for the finite adaptation level of this phasic response
neuron but — considering the large variance at the upper edge of the behavioral response
curve (the upper box in Fig 5.1) — the latter is no obligatory ingredient of pattern recog-
nition. Note also that the spike train of the adapting ascending neuron can be seen as a
combination of AN12 and ANG6 spike trains. For example, consider that reading out the
AN12 differently, taking bursts as a unit of information transmission (Lisman, 1997),
would be sufficient to constitute a period counter. However, as the pulse counter should
be a distinct information channel, i.e., with distinct read-out, we choose to depict this
information channel as a different neuron.

Model specifications. The AN12 neuron is specified as in chapter 4 with parameters
unchanged. This is the only spiking neuron of the model. For the subsequent threshold
operation, the output of AN12, termed Ran12, is given as the sum of all spikes within
1 s. The AN6 neuron is a firing rate based model, with firing rate raye () = 1 s~ ! when
presented with a syllable and r4y6(t) = 0 s~ between syllables. For the subsequent
threshold operation, the integrated output of AN6 is computed as Ryyg = fols rane(t)dt.
The adapting neuron has firing rate r44qic(¢) specified as a function of the stimulus s(#)
and an adaptation current a(z).

da(t
Tphasic# = _a<t) +S(t) 5

I'phasic (t) = S(t) - Aphasica(t) s

where Tj45ic = 3 ms and A pj45ic = 0.9. For the subsequent threshold operation, rphas,-c(t)

is also integrated over 1 s: R pjagic = fols Fphasic(t)dt. All threshold operation are binary
with threshold values

04n12 = 8 spikes
Osnv6 =0.72,
eadapt — 013 .

The two last threshold values are dimensionless. 04y¢ can be interpreted as the min-
imum syllable-to-period ratio needed to elicit a response. Only if all three threshold
are exceeded, i.e., Ran12 > Oan12 and Rang > Oan6 and Rphasic > Gphasic, the binary
behavioral output is set to 1.

Modeling this system and chosing threshold values as specified above, one obtains a
range of syllable-pause combinations similar to observed values (gray area in Fig. 5.2).
Our model is not sufficient to explain the lower left part of the syllable-pause space.
In contrast to grasshoppers, our model predicts a positive behavioral response for very
short pause and syllable durations. However, in this regime additional processes like
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Figure 5.3: Complete circuit accounting for the behavioral response. A set of par-
allel feature detectors measures relevant sign stimuli which are then integrated and
filtered by a logical AND-wiring. The AN12 measures total pause duration, the AN6
total syllable duration and the output of a hypothetical strongly adapting neuron is pro-
portional to the number of syllables.

gap detection (von Helversen, 1972) are operating, potentially dissolving this incoher-
ence.

One prediction of the AN12 model is that higher syllable intensity leads to higher
spike count. Hence, shorter time frames for evaluation (7y,..) should be sufficient to
elicit a behavorial response in loud songs compared to quiet songs. This prediction is
currently tested in behavioral experiments by the group of Bernhard Ronacher. Another
prediction is displayed in Fig. 5.4. If integration of ascending neurons is responsible for
song recognition, then the detailed song structure is not important. However, it is only
crucial that in average both syllable and pause durations are sufficiently long. Hence,
a combination of two different mixtures of syllables and pauses — each on its own not
sufficient to elicit behavioral response — should lead to a positive classification.

5.4 Discussion

A moving average of the AN12 response alone cannot explain all features of the behav-
ioral response curve. We suggest a continuative model based on calculating a moving
average from different sources. The whole behavioral response pattern could be ex-
plained by assuming integration from 3 different neurons within a certain time window
T;.c, subsequent thresholding and a logical AND-operation which, again, could be im-
plemented by integration and thresholding. In this model, one neuron accumulates
absolute pause duration, another one absolute syllable duration and a third the number
of periods (pulse counter) within 7,... As we have shown, the AN12 encodes the in-
dividual pause duration by the spike count within a burst and the total pause duration
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Figure 5.4: Prediction of the integration hypothesis. a) 4 different model songs.
A and B would not elicit behavorial response as combinations of pause and syllable
duration lie outside of the observed behavioral range. In contrast, model song C falls
into the range. If integration over a time scale of, e.g., 750 ms is sufficient, only the
average of syllable to pause ratios is decisive and model song D also elicits a response.
b) The average syllable-to-pause combination of each model song.

by the total spike count. Another ascending neuron, the so-called ANG6, fires tonically
in response to ongoing syllables (Stumpner, 1988) and, hence, is the first candidate for
syllable duration encoding. As a pulse counter, we propose a neuron with strong phasic
response.

Our model corresponds well with some observations in behavioral experiments, as
reported in Balakrishnan et al. (2001). Comparably to our study, the authors propose
a conceptual model where one neuron detects syllable onsets, another neuron encodes
syllable duration. Additionally however, in that study, the finite level of noise in the
pause of natural songs was observed to play a role in behavioral response, indicating
a more refined role of the syllable duration encoder. An extended numerical model
of male mating song processing should take such effects but also gap detection into
account. Possibly, amplitude fluctuations within songs on short time scales (< 3 ms),
adaptation currents in receptor neurons and subsequent coincidence detection can ade-
quately expand our model.

The integration and thresholding operation is consistent with an ample range of re-
sults in other systems. Some frogs communicate with a pattern of pulses and interpulse
intervals. In the auditory midbrain of these frogs, a certain class of neurons integrates
the number of acoustic pulses in a nonlinear fashion, responding only if a threshold
number of appropriate pulses and interpulse intervals arrives (Alder and Rose, 1998;
Edwards et al., 2002). In contrast to the AN12 in the grasshopper, neurons in the anuran
auditory midbrain are sensitive to the interpulse interval, i.e., the period, rather than to
the preceding pause duration (Edwards et al., 2005). In monkeys, the response of single
neurons in the primary sensory cortex was correlated with behavioral output when dis-
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criminating vibrotactile stimuli (Luna et al., 2005). Only the integration of spike count
over a time window with most mass within the first 250 ms correlated with behavioral
output on a trial-to-trial basis. Furthermore, in electric fish, pacemaker neurons inte-
grate incoming spike trains in a ’Sample-and-Hold’ fashion over a wide range of time
scales (up to several minutes) and adapt their firing rate in a graded manner, mediated
by NMDA receptors and TRP channels (Oestreich et al., 2006). This demonstrates that
plausible mechanism exist that can account for the hypothesized integration.

Our model of parallel feature-detection and subsequent thresholding is related to the
multiple-look hypothesis (Viemeister and Wakefield, 1991) in which information from
individual ’looks’ is held in memory and combined later. According to our model, the
information about individual looks of one specific feature is encoded in the associated
ascending neuron and then combined by long time constant integration, similar to the
pulse-integrator in (Alder and Rose, 1998).

SUMMARY AND OUTLOOK:

Here, we show that a seemingly complicated task like time-scale invariant pattern
recognition can plausibly be mastered by the simple auditory system of grasshoppers
by reducing the computation in a well ordered manner to parallel feature detection and
subsequent integration. Behavioral data can be explained qualitatively as well quanti-
tatively. A testable prediction is provided.

So far, the minimal model circuit for song classification is based only on recordings
from a specific ascending neuron and general knowledge of other ascending neurons
(Stumpner, 1988) and receptor cells (Benda, 2002). However, this circuit could be the
basis for a canonical model of the grasshopper auditory system. Subsequently, experi-
mental results would be incorporated and numerical studies could provide predictions
that can, in turn, be tested in experiments. In the long run, such a model should explain

* the recognition of female songs, e.g., based on (Krahe et al., 2002),

* gap detection — the SN6 and AN4 but also the AN12 could be involved in this
task (Stumpner et al., 1991), and

* the interaction of high-frequency modulations and low-frequency envelope of
communication signals: Is there a role for coincidence detection when reading
out receptor cell response? Also in this context: what is the role of finite ampli-
tude modulations on short time scales within pauses?

Furthermore, it will be a particular challenge to generalize the combination of the
FexSin circuit and temporal feature integration to non-repetitive and complex temporal
signals such as spoken words.

tex
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Efficient coding: an introduction to
information theory

What are the guiding principles of sensory processing? Here and in the following chap-
ters, we will take a mathematical stance on this question. Information theory provides a
suitable language to tackle issues related to coding (section 6.1). Representing an exter-
nal signal, the neural system should use preferably short codes, not wasting ressources
without need. This efficient coding hypothesis is treated mathematically by the source
coding theorem (section 6.2). Furthermore, if information transmission is noisy, the
code should be read-out in such a manner that reconstruction is as accurate as possi-
ble. This aspect can be formalized in the channel coding theorem (section 6.3). These
hypotheses are not left unchallenged. For example, it is suggested that redundancy
should be introduced to compensate for channel noise (Doi et al., 2007), seemingly
in contradiction to efficient coding. However, such redundancy appears naturally when
considering source and channel coding within one framework (section 6.4). Real neural
systems are also confronted with highly complex signals while relying only on limited
coding capacities. Hence, there is arguably need to obtain two objectives at the same
time: limiting coding costs while maximizing reconstruction quality. This problem is
formally solved by the rate distortion function (section 6.5). In contrast to these basic
efficient coding approaches, it is argued that higher (cortical) representation can best be
modeled by assuming a sparseness objective (Olshausen and Field, 1996; Lewicki and
Sejnowski, 2000). Here, an overcomplete basis leads to a compact representation of
natural signals by only a small number of spikes. Furthermore, our grasshopper studies
emphasize the importance of feature detection (such as the pause duration of commu-
nication signal) and invariant decoding strategies (such as time-scale invariant pattern
recognition) in later stages of the auditory system. Hence, both the sparseness objec-
tive and the results from the grasshopper auditory system indicate that efficient coding
per se is inadequate and, instead, that extraction of specific underlying causes may be
crucial. Fortunately, the information bottleneck method, as an extension of the rate dis-
tortion function, introduces the notion of extracting relevant information (section 6.6),
and can be regarded as the basis for integrating these slightly different theories. It is

46
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important to note that the mathematical theory of communiction (Shannon, 1948) pre-
ceded and strongly influenced theories of neural coding in computational neurosciences
(Attneave, 1954; Barlow, 1961). In fact, neurosciences were critized for relying solely
on the information-theoretic description of neural systems and overemphasizing input-
output relationships, considering the brain as a computer gestalt (Varela, 1976). We
will shortly discuss the complementary but unexplored view of neural systems as au-
topoietic, selfregulating structures at the end of this thesis.

Most results of this chapter rely on (Shannon, 1948; Cover and Thomas, 1991;
Mackay, 2003). The information bottleneck method section is based on (Tishby et al.,
1999; Tishby, 2005).

6.1 A measure for information

Given a set of n possible events, each occuring with known probability p1, p2,..., ps-
What is an appropriate measure to quantify the uncertainty of an event to occur? More
precisely, we require that this measure, say H, obeys the following:

* Continuity: H should be continuous in p;.

* Monotony: H should monotonically increase with the number of possible events
n if all occur with same probability. The intuition here is that more possibilities
increase the uncertainty of outcome.

* Additivity: If the choice is broken down into successive choices the global mea-
sure of uncertainty H should be the sum of the invidual values of H.

Shannon showed in his seminal work A mathematical theory of communication (Shan-
non, 1948) besides many other important results that the only measure H satisfying all
three conditions barring a positive constant is the entropy:

H=—) pilogp;.

n
i=1

Conveniently, the logarithm with base 2 is chosen. From hereon, log will always denote
the logarithm with base 2.

For the entropy it is true that H(X) > 0, where X is a random variable. The en-
tropy of a random variable is the average length of the shortest description of a random
variable. Furthermore, if X can take only discrete values, then H(X) is the minimum
expected number of binary questions required to determine the value of X. To summa-
rize: the entropy is the average amount of information required to describe a random
variable.

The concept can be extended to more than one random variable - then called joint
entropy. Particularly interesting is the measure of how much information one random



48 CHAPTER 6. AN INTRODUCTION TO INFORMATION THEORY

H(X,Y)

Figure 6.1: Venn diagram illustrating the relationship between mutual informa-
tion and entropic quantities. Quite intuitively, the mutual information between two
variables X and Y covers that area (information) that (X)) has in common with H(Y).
Adapted from Cover and Thomas, 1991. Note that the interpretation can become more
difficult for three term entropies (Mackay, 2003).

variable X carries about another random variable Y. This measure is called mutual
information and is formally given by

100Y) = ) pl.y)log e

Mutual information is symmetric in X and Y and nonnegative. It can be written in
terms of entropic quantities, e.g.,
I(X,Y)=H(X)—H(X|Y)
I(X,Y)=HX)+H(Y)-H(X,Y).

These relations are illustrated in Fig 6.1. Finally, we give the definition of the Kullback-
Leibler distance, also called relative entropy:

D(pl|q) Zp )log 2 ; 6.1)

We can see that the mutual information is a spe<:1a1 case of the Kullback-Leibler dis-
tance:

I[(X,Y) =D(p(x,y)llp(x)p(y)) -

6.2 Shannon source coding

We want to compress a random variable X into a set of symbols, e.g., a binary code.
This is the problem of data compression. What is the shortest code we can obtain on
average?
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To get a first intuition, let us look at a particularly simple example. Let X be the
color of marbles occuring with the following frequency and encoded by a binary word
code:

P(X =red) = C(red) =0,

P(X = blue) = —, C(blue) =10,

P(X = orange) = C(orange) =110,

R = O] = =N =

P(X = green) = C(green) =111.

The entropy of X is H(X) = 1.75 bits and the average word length [ of the binary code is
also E(I(X)) = 1.75 bits. We see that the average length of a code can correspond to the
entropy of the random variable. In fact, the entropy of X is the shortest possible code
(shortest expected word length) that can in principle be obtained such that the original
source symbols can be exactly recovered (lossless source coding). More precisely:

Theorem 6.2.1. Source coding. Consider the Shannon code assignment [(x) = log ﬁ.
Let L be the associated expected length of the code L=, p(x)l(x). Then

HX)<L<HX)+1.

The proof is given on page 88 in (Cover and Thomas, 1991). We should hasten
to add that such a Shannon code assignment is not necessarily the optimal code, i.e.,
has the shortest average code word length. An optimal code is given by the so-called
Huffman code (Huffman, 1952). However, we can concatenate a given number n of
input symbols together x" = (x1,x2, ...,x,) and use a joint codeword /(x"). The expected
codeword length per input symbol is then L, = 1E(I(X")). Then we have:

Theorem 6.2.2. Source coding with block codes. The minimum expected codeword
length per symbol satisfies

H(X") H(X")

The proof is given on pages 88+89 in (Cover and Thomas, 1991).

What happens if the expected description length is designed for the wrong distribu-
tion? Obviously, the code will comprehend some redundancy and the average expected
word length will be larger than H(X). Consider that the true probability distribution is
p(x). Our (wrong) estimation is g(x). Then the minimal expected word length has a
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lower bound given by:

E(I(X)) =) p(x)log——

" q(x)
B o p(x)
_;P( ! 24 p(x)
= LrWlog s+ p(log 7o

=D(qu) +H(p) .

Thus the redundancy in the code is equivalent to the Kullback-Leibler distance between
true and estimated distribution.

A relevant example of a specific code is human language. If an alphabet has, e.g., 26
letters, this corresponds to a 26-dyadic code. When is it reasonable to introduce a new
word into a given language? We may use source coding to obtain a heurestic ansatz
for word introduction. An example: The English word fairness has found its way
into the German language and is commonly used. Why has fairness been established?
The German translation of fairness is akzeptierte Gerechtigkeit und Angemessenheit',
a somehow complicated expression. The substitition of words has two effects: First, a
long expression with relatively high total entropy is substituted by a shorter expression
with lower entropy. Second, the introduction of fairness increases the total entropy of
the language. Hence, the word-introduction prevails if the first effect is larger than the
second effect?.

Comparably, one can ask: when should the brain supply additional coding space for
a new concept? For example, the concept of Claude Shannon probably didn’t have any
particular representation (code word) in my cortex at the beginning of my studies but
because of frequent use in relevant context this is different by now.

We are now in a position to introduce the notion of predictive coding. Assume that
we observe the transmission of a sequence of events x* = (x1,x2,...,X,). Then we can
encode x; relying on the information in ¥’ ~! thus saving coding space. A given joint
distribution p(x") is then efficiently encoded in a predictive sequential form

- I_’?Ilp<xtrx“>

Indeed, the codelength of xj is —log p(x1) and the codelength of x; is —log p(x;[x'~1),
resulting in a total codelength of

n

—logp(x") =) —logp(x|x'~") . (6.2)
t=1

'Source: http://de.wikipedia.org/wiki/Fairness, 08/2007, translation verified by Professor Jiirgen Tra-
bant, personal communication

%In fact, this example touches deep issues. A philosopher will ask whether concepts exist independent
of language (the platonic view). More pragmatically, this fairness-example indicates the high redundancy
of human language, also observed on other time scales. In fact, the example can motivate the use of an
overcomplete (redundant) basis.
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SOURCE CHANNEL
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source —» compressor —> encoder l

noisy channel

represen-
tation * decompressor | <*— decoder

Figure 6.2: Source and channel coding. The original source is compressed and en-
coded, e.g., into a binary code. Source coding implicitly assumes that the communi-
cation channel is noisefree. In physical and biological systems, channels are noisy.
However, error-free decoding is still possible up to a certain channel capacity. Adapted
from Mackay, 2003.

Crucially, we can achieve an optimal code of x" by predictive coding, i.e., an online-
adaptive code (Barron et al., 1998) without relying on a block code. It is interesting
to note that predictive information can - in some cases - be related to an explicit value
function analytically. For example, in repeated horse races with non-adapting book-
keepers an optimally behaving gambler can get an increase in doubling rate (her pay-
off) that is identical to the available predictive information (Cover and Thomas, 1991).

6.3 Shannon channel coding

Up to now, we have only been concerned with efficient data encoding neglecting prop-
erties of real information channels. In fact, the above procedure is not much more than
lossless compression. However, when studying biological systems we should include
the notion of noisy channels.

A discrete channel is defined by an input alphabet, an output alphabet and a prob-
ability transition matrix p(y|x), i.e., the probability of observing output y given input
x. Furthermore, we define the information channel capacity of a discrete memoryless
channel as

C=max1(X,Y) (6.3)

p(x)
where the maximum is taken over all possible input distributions p(x). When all mes-
sages are transmitted noisily one would assume that errorfree decoding is not possible.



52 CHAPTER 6. AN INTRODUCTION TO INFORMATION THEORY

However, Shannon showed in his noisy-channel coding theorem that errorfree decod-
ing can still be done (Shannon, 1948): If information is transmitted at a rate (channel
symbols per source message) below C, then it is always possible, to find a block code
of size N and a decoding algorithm such that the probability of incorrect decoding is
arbitrarily small. Formally:

Theorem 6.3.1. Noisy channel coding. Take S input symbols indexed by i = (1,2, ...,S)
encoded by codewords (X1,Xa,...,Xs). Each codeword has length N. The rate of this
code is defined as R = IO%S. Then all rates below channel capacity C are achievable.
For every rate R < C and € > 0 there exists a block code of length N, with large enough
N, such that the maximal probability of assigning a wrong output symbol k to a given
input symbol i, i.e. k # i, is lesser equal €.

The intuition behind the channel coding theorem is that by increasing the block
size, one increases the input and output alphabets. Then any particular input produces
an output that is restricted to a small subspace of the output alphabet - the typical
output given that input. Effectively, disjoint output sequences for a subset of inputs can
be achieved. A detailed proof is given in chapter 10 of Mackay (2003).

For illustration, take the noisy typewriter with 26 letters {A,B,C,...,Z} arranged in
a circle. Each input letter is transmitted unchanged with probability p = %, or changed
into the subsequent letter with p = % Then the channel capacity is log13. Setting the
block length N to 1 and choosing to encode the subset of the alphabet {A,C,E,...,Y},
this code has a rate of log 13 and can be decoded without noise.

6.4 Source channel coding

So far, we have dealt with data compression and data transmission seperately. In fact,
one can treat both problems sequentially as indicated in Fig 6.2. However, is it possible
to combine both problems? We have seen that source coding allows a compression
R > H and that channel coding leads to the requirement R < C. Is it necessary and
sufficient to require that H < C in order to send a source over a channel such that
errorfree decoding is possible?

The joint source channel coding theorem states that both operations, data compres-
sion and data transmission, can be done in one stage. On the other hand, dealing with
both problems separately is as efficient as considering both exercises together.

First take note of the Asymptotic Equipartition Property that can be regarded as the
law of large numbers for information theory.

Theorem 6.4.1. The Asymptotic Equipartition Property states that if X1,X>, ... are in-
dependent, identically distributed random variables ~ p(x) then for every € > 0 there is
an N large enough such that a given sequence x" = (x1,x2, ...,xy) belongs to a subset
of all possible outcomes A]sv with probability P > 1 —¢, Aév has not more than 2VH(X)+€
members and the probability of each of its members xg is close to 27NHX) i the fol-

lowing sense:
2~ NH(X)+e) < (N < - N(H(X)—2)
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With this property we gain the notion of typicality, i.e., being a member of AY.
That has the advantage that we can deal with the limited subset of typical sequences,
because the probability of non-typical sequences is arbitrarily low with N large enough.
We will make use of this property in the following theorem. Note that the Asymptotic
Equipartition Property is equivalent to source coding (Theorem 6.2.2).

Theorem 6.4.2. Source channel coding. Given a sequence of input symbols XV =
(X1,X2,...,Xy). The decoder estimates a sequence of output symbols as XV = (X1,Xa, ..., Xn).
The probability of decoding error is given by PN, = P(XN # XN). If XV satisfies
the Asymptotic Equipartition Property then there exists a source channel code with
PN —0ifH(XN) < C. Otherwise, if H(XN) > C the probability of error has a lower

error

bound > 0.

Proof. We will encode only those sequences that belong to AY. All other se-
quences appearing with probability € will result in an error. Furthermore, there are
at most 2V(H+€) sequences in AY that can be encoded with at most N(H + €) bits.
The Asymptotic Equipartition Property also implies that for all xV € AY it is true that
— % logp(x") < H(X) +e. With this fact, we can choose the rate

R=HX)+e<C
such that probability of wrong decoding for a member of the typical set is < €. Hence,

Pé\i{mr :P(XN #XN)
< P(XN not € AM) + P(XN £ XV | XN € AY)

<e4+e=2¢.

Joint source channel coding may have advantages for biological systems compared
to compressing and transmitting data separately. For example, speech recognition de-
grades if the signal is transmitted in presence of white noise after redundancy reduction
(compression). This suggest that redundancy in speech fits channel properties of the
auditory system and the noisy environment. The grasshopper communication signal
consists of more syllable-pause repetitions than minimally needed for song recognition.
This additional redundancy may be appropriate to counteract the noisy environment (a
channel property).

6.5 The tradeoff between effective communication and
minimal coding cost

So far, we have treated discrete communication. However, biological signals are usually
continuous in time and space. Continuity in the source signal poses new problems.
For example, consider that the channel is noiseless. Then any real number can be
transmitted with no error. Thus the channel has infinite capacity. Also, if the noise
variance is non-zero and the input is continuous we can choose an infinite subset of



54 CHAPTER 6. AN INTRODUCTION TO INFORMATION THEORY

inputs with arbitrary resolution such that the probability of error vanishes. But then, we
also require infinite capacity. This is not plausible for a physical or biological channel.
Hence, we introduce a limitation on the capacity. A reasonable constraint, for example,
is the maximum energy S needed for any codeword (x1,x2, ..., X,):

ixl-z <S.
i=1

The capacity is then a function of such an energy constraint. In general, for input X and
output Y the capacity-cost function is

s(x")

I1l
S| =

C(S) = max  1(X,Y). (6.4)
p"):E(s(x"))<S

This function is monotonically increasing, concave (decreasing positive slope), and for
unconstrained optimization and finite input data equivalent to the capacity in 6.3, here
denoted as Cy,4y. Its inverse function S(C) exists for 0 < C < Cypay-

On the other hand, if we cannot transmit infinite information then the output can
never reconstruct the input accurately — we encounter another challenge. The question
then is: how can we achieve a good reconstruction. A criterium for goodness needs to
be defined, called distortion. A distortion measure d is an arbitrary distance measure
between signal and reconstruction after signal transmission, i.e., a mapping from the
combination of source and reconstruction alphabet into the set of non-negative num-
bers. Then we can ask: what is the minimal information rate needed to achieve a given
distortion?

Theorem 6.5.1. Rate distortion function. For given independent identically distributed
source X with distribution p(x), reconstruction X and distortion function d(x,X) the
minimal achievable rate at distortion D is given by

R(D) = min 1X,X) . (6.5)
(D) p(fIX)in,)eP(x)p(ﬁ\X)d(xvf)SD( )

For a proof see chapter 13 in Cover and Thomas (1991). The rate distortion function
i1s monotonically decreasing and convex (decreasing value of negative slope) and if
D = 0 equivalent to H(X) from Shannon source coding.

The crucial observation is that the capacity-cost function (Equ. 6.4) and the rate-
distortion function (Equ. 6.5) are related via the mutual information between input and
output. This mutual information is the interface between data compression and data
transmission in the general (continuous) case. The tradeoff between cost and distortion
is then given by

S(D)=S(C=R(D)) .

The necessary and sufficient condition for optimality in data compression, i.e., remov-
ing source redundancy, and data transmission, i.e., minimizing reconstruction error,
is consequently given by C(S) = R(D). This is the generalization of the joint source
channel coding theorem (6.4.2) and is called lossy source channel coding.
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Figure 6.3: Finding distances between convex sets. a) The Blahut-Arimoto algorithm
can be illustrated as finding the minimal distance (relative entropy) between two convex
sets of probability distributions. This is achieved by iteratively finding the shortest
distance between a point in one set and the opposite set. The resulting end point is
taken as starting point for the next iteration. b) The information bottleneck algorithm
iterates between three sets of probability distributions.

In rate distortion theory, we request — as a side constraint — that the average dis-
tortion is bounded: E(d(x,%)) = Y., p(x)p(& | x)d(x,X) < D. Such a problem can be
reformulated as a Lagrangian optimization by introducing a Lagrange multiplier. In
this case, we have to minimize

L(p(x,%)) =1(X,X) +BE(d(x,%)) .

The stationarity conditions for this optimization are given by

p51) = 60 exp (~(r. )
p(#) = ¥ ol | )p(x). 66)

where the normalization function is given by Z(B,x) = Y ¢ p(£) exp (—Bd(x,%)). By it-
eratively updating both equations, the global optimum will be achieved. This algorithm
is called the Blahut-Arimoto algorithm (Blahut, 1972). The convexity of the problem
guarantees optimal convergence as illustrated in Fig 6.3a.

Lossy-source channel communication systems are optimal if the measured average
distortion and average cost lie on the cost-distortion tradeoff curve. The average cost
depends on the marginal distribution p(x) at the channel input, the average distortion on
the joint marginal distribution of source and reconstruction p(s, ). The theorems above
guarantee the possibility to find the correct marginal distribution by asymptotically long
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code words. However, in some cases source and channel already produce the correct
marginal distributions - they are probabilistically matched. What are the requirements
for probabilistically matching? Necessary conditions on optimal communication sys-
tems are given by the requirements on the cost function, which is dependent on the
input distribution for the channel, S(x), and the distortion function, which is dependent
on the joint source-reconstruction distribution, D(s, §) (Gastpar et al., 2003; Csiszar and
Korner, 1981):

S(x) =D(p(y | x) || p(¥)) (6.7)
D(s,$) =—logs | § (6.8)

up to shifts and scaling. Distributions fulfilling these conditions lie on the cost-distortion
curve. Hence, also the long block codes of rate distortion theory obey Equ. (6.7)+(6.8).
However, for some source-channel pairs single letter codes without long block codes
can be obtained with Equ. (6.7)+(6.8) leading to probabilistic source-channel matching
(Gastpar et al., 2003).

6.6 The Information Bottleneck Method

The information bottleneck is a particular instance of rate distortion theory and a method
for extracting relevant aspects of data (Tishby et al., 1999). The latter aspect is particu-
larly important for the description of biological systems, as filtering and interpretation
of incoming data is arguably more crucial than straightforward representation. Tech-
nically, one seeks to capture those components of a random variable (input) X that
can explain observed values of another variable Y (response). This task is achieved by
compressing the variable X into its compressed representation X while preserving as
much information as possible about Y. The trade-off between these two targets is con-
trolled by the trade-off parameter . Hence, the information bottleneck problem can be
formalized as minimizing the following Lagrangian:

minL: £L=I1(X,X)—BI(Y,X) .

The first term can be regarded as minimizing the complexity of the mapping while the
second term tries to increase the accuracy of the representation. From the point of
view of clustering, the information bottleneck method finds a quantization, or partition,
of X that preserves as much mutual information as possible about Y. From the per-
spective of machine learning, this corresponds to supervised learning. X is the input
signal and Y tells you what aspects of the input should be learned. The information
bottleneck method has been applied successfully in different circumstances, e.g., for
document clustering (Slonim and Tishby, 1999), neural code analysis (Dimitrov and
Miller, 2001), gene expression analysis (Friedman et al., 2001) and extraction of speech
features (Hecht and Tishby, 2005).

It is clear that the information bottleneck method is a particular instance of rate
distortion theory. The information bottleneck distortion measure is mutual information,
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1.e., Kullback-Leiber distance or information divergence (Equ. 6.1). One can specify
a class of rate-distortion problems where X has to be compressed in such a way that
information about another related variable Y can be retrieved. Requiring a number of
mathematical assumptions onto this class of rate distortion problems leads directly to
the information bottleneck method (Harremoé&s and Tishby, 2007).

Similarly to the rate distortion problem, one can also determine stationary condi-
tions for the information bottleneck problem:

p(&) =} p(x)p(%|x)

. 1 .
X)=—= X X|x
PO = Zx‘,p( Y)p(%| %)
¢ 1) = PE L BDGOWIIp01)
p(R|x)= Z(B.x) exp (6.9)
By iterating over these 3 equations, one obtains an alternating optimizing projection
algorithm, comparable to the Blahut-Arimoto algorithm (Equ. (6.6) and Fig. 6.3b).
However, in constrast to the Blahut-Arimoto algorithm, the information bottleneck al-
gorithm can be trapped in local optima (Tishby, 2005).

The information bottleneck has an additional important property: It works as a prob-
abilistically matched source-channel. For this, note that the information bottleneck can
be interpreted as follows: Y is regarded as the target output distribution, and, in contrast
to rate distortion theory, the information bottleneck already requires knowledge of input
X and output Y. Then the problem is to find the optimal representation X that relates
input and output. In fact, the biological point of view assumes that evolution managed
to achieve a probabilistic source-channel matching in biological communication sys-
tems — our task is then to find the internal characteristics of this system. Observe, that
by definition I(X,Y) > I(X,X) and the Markov relation is given by

XoXoY.

In the following, we technically treat X as source and channel input. The effective
information bottleneck distortion is given as

dip(x,%) =1(X,Y) —I(X,Y)
=D(p(y|x) || p(y %))
~ —logp(% | x)

where we used Equ. (6.9) for the last step. The information cost can be demonstrated
to be (Tishby, 2005):

s(£) =D(p(x | %) || p(x))
=BD(p(y | x) || p(y)) = BI(X,Y) —log Z(P,x) .
Thus, consistency with Equ. (6.8) and (6.7) is given and the information bottleneck

finds an optimal representation X with respect to cost and distortion without block
codes.
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We finish this overview by introducing a particular realization of the information
bottleneck problem: for Gaussian variables and linear mapping the problem can be
analytically solved: the optimal functions are the solution of an eigenvalue problem
(Chechik et al., 2005). The key point is that the entropy of Gaussian variables can be
written as the logarithm of the relevant covariance matrices between input and output.
Minimizing the Lagrangian, finally, is equivalent to diagonalizing the covariance matri-
ces; the eigenvector with the smallest respective eigenvalue gives the most informative
part of the mapping between input and output®. This particular method will be used
extensively in the next chapters. Relevant mathematical details will be introduced as
required.

SUMMARY AND OUTLOOK:

Information theory provides the tools for solving data compression and data transmis-
sion problems. As neural systems presumably deal with both problems simultaneously,
a joint source-channel coding approach should be appropriate. The information bot-
tleneck emphasizes the role of a (hidden) internal state that is designed to optimally
compress and transmit environmental signals. As motivated in the introduction, many
real world problems are related to predicting future states of the environment. This
assumption gives a natural interpretation of the target output Y as the space of future
events that can be predicted by past events. Furthermore, online adaptive coding is a
natural implementation of a joint source-channel matching as seen in Equ. (6.2). In
the following chapters, we will highlight this perspective and approach the past-future
information bottleneck analytically.
tex

3 An interesting question, raised in this context but not tackled within this thesis: How does the
Gaussian information bottleneck relate to joint-source channel coding of the Gaussian channel with
Gaussian input (Cover and Thomas, 1991)?
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Local Predictive Coding and the
Slowness Principle

Understanding the guiding principles of sensory coding strategies is a main goal in
computational neuroscience. Among others, the principles of predictive coding and
slowness appear to capture aspects of sensory processing. Predictive coding postu-
lates that sensory systems are adapted to the structure of their input signals such that
information about future inputs is encoded. Slow feature analysis (SFA) is a method
for extracting slowly varying components from quickly varying input signals, thereby
learning temporally invariant features. Here, we use the information bottleneck method
to state an information-theoretic objective function for predictive coding. We then show
that the linear case of SFA can be interpreted as a variant of predictive coding that max-
imizes the mutual information between the current output of the system and the input
signal in the next time step. This demonstrates that the slowness principle and predic-
tive coding are intimately related !.

7.1 Introduction

One outstanding property of sensory systems is the identification of invariances. The vi-
sual system, for example, can reliably identify objects after changes in distance (King-
dom et al., 1995), translation (Hubel and Wiesel, 1962), size and position (Ito et al.,
1995). Neuronal correlates of invariance detection range from phase-shift invariance
in complex cells in primary visual cortex (Hubel and Wiesel, 1962) to high-level in-
variances related to face recognition (Quiroga et al., 2005). Hence, understanding the
computational principles behind the identification of invariances is of considerable in-
terest.

One approach for the self-organized formation of invariant representations is based
on the observation that objects are unlikely to change or disappear completely from one
moment to the next. Various paradigms for invariance learning have been proposed that

I'This chapter is based on (Creutzig and Sprekeler, 2008)
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exploit this observation (Foldiak, 1991; Wallis and Rolls, 1997; O’Reilly and Johnson,
1994; Stone and Bray, 1995; Einhduser et al., 2005). As these paradigms extract the
slowly varying components of sensory signals, we will refer to this approach as the
slowness principle (Wiskott and Sejnowski, 2002; Wiskott, 2006), in related literature
also called temporal coherence or temporal stability principle (Einhduser et al., 2005;
Hurri and Hyvérinen, 2003; Wyss et al., 2006). One formulation of this principle is
Slow Feature Analysis (SFA; Wiskott and Sejnowski, 2002). SFA has been successfully
applied to the learning of various invariances in a model of the visual system (Wiskott
and Sejnowski, 2002) and reproduces a wide range of properties of complex cells in
primary visual cortex (Berkes and Wiskott, 2005). In combination with a sparseness
objective, SFA can also be used as a model for the self-organized formation of place
cells in the hippocampus (Franzius et al., 2006; for related work see Wyss et al., 2006).

A different approach to sensory processing is based on temporal prediction. For
successful completion of many tasks our brain has to predict future states of the envi-
ronment from current or previous knowledge (Bialek et al., 2001). For example, when
trying to catch a ball, it is not the current position of the ball that is relevant, but its
position in the moment of the catch. We will refer to processing strategies that aim at
performing this prediction as predictive coding. Predictive coding is the precondition
for certain forms of redundancy reduction that have been applied successfully to model
receptive fields in primary visual cortex (Rao and Ballard, 1999) and surround inhibi-
tion in the retina (Srinivasan et al., 1982). Redundancy reduction has been proposed
as the backbone of efficient coding strategies and inherently relates to information the-
oretic concepts (Attneave, 1954; Barlow, 1961; Atick, 1992; Nadal and Parga, 1997).
However, to our knowledge an information theoretic framework for predictive coding
has not yet been formulated.

In this work, we use the information bottleneck method (Tishby et al., 1999), as
introduced in the last chapter, to derive an information theoretic objective function for
predictive coding. The information about previous input is compressed into a vari-
able such that this variable keeps information about the subsequent input. We focus on
Gaussian input signals and linear mapping. In this case, the optimization problem un-
derlying the information bottleneck can be reduced to an eigenvalue problem (Chechik
et al., 2005). We show that the solution to this problem is equivalent to linear slow
feature analysis, thereby providing a link between the learning principles of slowness
and predictive coding.

7.2 Linear SFA

Slow Feature Analysis is based on the following learning task: Given a multidimen-
sional input signal we want to find scalar input-output functions that generate output
signals that vary as slowly as possible but carry significant information. To ensure the
latter we require the output signals to be uncorrelated and have unit variance. In math-
ematical terms, this can be stated as follows:
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Optimization problem 1: Given a function space ¥ and an N-dimensional input sig-
nal X; = [X(t),...,Xn(¢)]T with t indicating time, find a set of J real-valued instanta-
neous functions g j(X) of the input such that the output signals (Y;); 1= g j(X;) minimize

A(Y)) = (Y], (7.1)
under the constraints
(Yj)y = 0 (zero mean) (7.2)
<Yj2>, = 1 (unit variance) (7.3)
Vi<j: (Yin>, = 0 (decorrelation and order) (7.4)

with {-); and Y indicating temporal averaging and the derivative of Y, respectively.

Equation (7.1) introduces the A-value, which is a measure of the slowness of the
signal ¥;. The constraints (7.2) and (7.3) avoid the trivial constant solution. Constraint
(7.4) ensures that different functions g; code for different aspects of the input.

It is important to note that although the objective is the slowness of the output signal,
the functions g; are instantaneous functions of the input, so that slowness cannot be
enforced by low-pass filtering. Slow output signals can only be achieved if the input
signal contains slowly varying features that can be extracted by the functions g;.

If the function space ¥ is finite-dimensional, the optimization problem can be re-
duced to a (generalized) eigenvalue problem (Wiskott and Sejnowski, 2002; Berkes and
Wiskott, 2005). Here, we restrict ¥ to the set of linear functions Y¥; = AX;, where A is a
J x N-dimensional matrix. In the following, we also assume that input signals X; have
zero mean. Then the optimal matrix obeys the generalized eigenvalue equation

ALy = AASy . (7.5)

Here, £y := (XXT), denotes the matrix of the second moments of the temporal deriva-
tive of the input signals and Yy is the covariance matrix of the input signals. A is a
diagonal matrix that contains the eigenvalues A; on the diagonal. The solution of the
optimization problem for SFA is given by the J X N matrix A that contains the eigenvec-
tors to the smallest eigenvalues A ; as determined by the generalized eigenvalue equation
(7.5). For the mathematically interested reader, a derivation of equation (7.5) can be
found in Appendix B.

We assume that the covariance matrix of the input data has full rank and is thus
invertible. The generalized eigenvalue problem (7.5) can then be reduced to a standard
left eigenvalue problem by multiplication with Z;l from the right:

Alzezi!| =ma. (7.6)

For discretized time the temporal derivative is replaced by X;; — X; and Xy can be
rewritten as Ly = 2Xx — [ZXM,X: +ZX,,X,+J , where Xy, | x, = (X;41X;); is the matrix
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containing the covariance of the input signals with the input signal delayed by one time
step (Blaschke et al., 2006). Moreover, if the statistics of the input data is reversible,
Yx,.,:x, 1s symmetric and Xy, .x, = Xx,.x,,,. Using these relations in (7.6) yields

2A |1-Xx,,xEy' | =AA. (7.7)
X

Note that the eigenvectors of the SFA problem are also the eigenvectors of the matrix
Y as defined in (7.7). Given the form of (7.7), we will be able to compare the eigen-
value problem with its counterpart from the information bottleneck ansatz of predictive
coding.

7.3 Local predictive coding

The predictive coding hypothesis states that an organism extracts information from its
sensory input that is predictive for the future (see e.g. Bialek et al., 2001). Information-
theoretically, this corresponds to mapping the data from the past into an internal state
variable such that information between that state and the future data is maximized. To
enforce a compact mapping, we introduce an additional penalty term that restricts the
complexity of the mapping:

max L : L = I(state, future) — B~ I(past,state) .

Obviously, the state variable cannot contain more information about the future than
about the past, so that for B~! > 1, the objective function L is negative: £ < 0. In this
case, L is optimized by the trivial solution, where the state variable does not contain
any information at all, because then £L = 0. Thus, to obtain non-trivial solutions, the
trade-off parameter should be chosen such that 0 < B~ < 1, or equivalently, 1 < B < co.

The optimization problem above can also be formulated as an equivalent minimiza-
tion problem that has the form of an information bottleneck as introduced in the previ-
ous chapter:

min L : L =I(past,state) — P I(state, future)

Here, we restrict ourselves to the special case of only one time step and a linear
mapping. An extension to more time steps will be treated in chapter 9. Let us assume
a discrete input signal X; that is mapped to an output signal ¥; such that Y¥; is most
predictive about the next input signal X;;; while minimizing the complexity in the
information bottleneck sense, as illustrated in Fig 7.1.

We assume that the input signal X; is an n-dimensional Gaussian vector and that the
output signal ¥; is generated by a noisy linear transformation

Y, =AX, +¢&.
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internal representation

min |(Xt,Yt) max |(Yt'X

sensory input | | |

Figure 7.1: Local predictive coding. The sensory system compresses information of
the current input X; into ¥; such that the mutual information between Y; and the next
input X; 11 is maximized.

The Gaussian white process noise & is introduced for reasons of regularization: oth-
erwise information theoretic quantities would diverge. For simplicity, we will assume
that the noise is isotropic and normalized, i.e. that Zg = <§§T) ; = I, where I denotes the
unit matrix. This is no limitation, as it has been shown that every pair of (A,X¢) can be

mapped into another pair (A,I ) such that the value of the target function £ remains the
same (Chechik et al., 2005).

The above problem can now be stated in information-theoretic terms:
Optimization problem 2: Local predictive coding (LPC). Given input signal X; and

output signal Y; = AX; + & where X; and & are Gaussian with (£,&;11), = 0, find the
matrix A(B) that minimizes

min £ : Lrpe =1(X,,Y,) —BI(Y:, X, 41) . (7.8)
with 3 > 1.

The general solution to this problem has been derived in Chechik et al., 2005.
(Chechik et al., 2005). For completeness, a sketch of the derivation can be found in
Appendix C. Here, we just state the solution:

Theorem 7.3.1. Local Predictive Coding Information Bottleneck.The solution to op-
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timization problem 2 for Gaussian input signal X with Y = A(B)X +& is given by

0;...;0] 0<B<BS
[(XIWI,O,,O] Bi’ SBS Bg

AB) =19 [ouWi:00W:0:...:0] BS <P < BE

where W; and A; (assume Ny < Ay < ...) are the left eigenvectors and eigenvalues of
EX,|X, +1Z§,1’ a,; are coefficients defined by o; = W ri= W,EXWI.T, Oisanm
(AN

dimensional column vector of zeros, and semicolons separate columns in the matrix
o, c __ 1
A(B). The critical B-values are B = T

The eigenvalues of Xy, x, HZ;, o,; are guaranteed to be real and non-negative, as
full-rank covariance matrices are positive definite. The key observation is that with in-
creasing B additional eigenvectors appear (second order phase transitions), correspond-
ing to the detection of additional features of decreasing information content.

7.4 Relationship between slow feature analysis and lo-
cal predictive coding

How does this solution relate to Slow Feature Analysis? We can rewrite ¥ =Xy .x ., Z;tl
in a more convenient form using Schur’s formula:

-1 _ —1 —1

ZXr |Xz+lz‘X, - (ZXz - ZXﬁxz-&-lz‘X, ZXz+l§Xz) ZX,
_ —1 -1
=1- ZXI §Xt+lz‘X, ZXtH;Xr ZXf

= I— (ZXt;Xt+IEXr )
7.7
W5

where we used the fact that time-delayed covariance matrices of reversible processes
are symmetric. Note that the matrix ¥ = Xy, .x, +1Z§,l also appears in the eigenvalue
problem for linear SFA in the case of discrete time series (7.7), and hence, the optimal
eigenvectors are the same for LPC and SFA. From (7.7) we know that the matrix to
diagonalize in SFA is

Yopa =21 —2% (7.9)
with eigenvalues kl-SF A whereas in LPC the target matrix is
Yipe=1—X%° (7.10)

with eigenvalues kiLP C. Solving (7.9) for ¥ and substituting the solution into (7.10), we
obtain the relationship between the eigenvalues:

1
7\,I~LPC — X;SFA . Z(kfFA>2 ]
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Figure 7.2: Relationship between eigenvalues of slow feature analysis and local
predictive coding. For discrete time series fast components can be equally predictive
as slow components. Only white noise is non-predictive.

SFA is guaranteed to find the slowest components first, whereas LPC finds the most
predictive components first. For example, a very fast component can be very predictive,
e.g. if the value at # 4 1 is the inverse of the current value (Fig 7.2). Hence, from the
local predictive coding point of view the absolute deviation from random fluctuations
rather than slowness is important. This may be important for the analysis of discrete
time series with high frequency components. However, this is only true for temporally
discrete data: for continuous data one would expect a monotonous relation between
eigenvalues of an information bottleneck approach and SFA eigenvalues.

Local predictive coding and SFA find the same components in the same order. The
difference is that local predictive coding allows to quantify the components in terms of
predictive coding. For example, take a 3-dimensional signal that consists of a mixture
of cosines with different frequencies. Both methods can separate the original signals
successfully (Fig. 7.3). Slow feature analysis and local predictive coding reveal com-
ponents in the same order, i.e., according to slowness. However, slow feature analysis
accredits the same amplitude to all components while local predictive coding gives
higher weights to slower components according to their predictive power.

7.5 Discussion

In this work, we relate slowness in signals to predictability. We have shown that predic-
tive coding and slow feature analysis are equivalent for the restrictions of Gaussianity,
linearity and one-time-step prediction. Both principles can explain some properties of
visual receptive fields (Berkes and Wiskott, 2005; Einhduser et al., 2005; Rao and Bal-
lard, 1999). On the one hand, our approach indicates that results from SFA studies such
as the findings on complex cell properties (Berkes and Wiskott, 2005) and hippocam-
pal place cells (Franzius et al., 2006) can be seen in terms of predictive coding. On
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Figure 7.3: Predictive coding and SFA differ in weighting of filtered components.
Both algorithms find the original cosines underlying a mixture signal. SFA discov-
ers features in order of slowness only. Predictive coding give individual components
weights in terms of their predictive information. For predictive coding, relative not
absolute weightings are shown.

the other hand, predictive coding by surround inhibition (Srinivasan et al., 1982) and
feedback connections (Rao and Ballard, 1999) may be interpreted from the viewpoint
of the slowness principle.

We have also shown that linear slow feature analysis can be motivated by information-
theoretic principles. It is interesting to note that this linear, discrete case is also related
to an implementation of second-order independent component analysis (Blaschke et al.,
2006).

The relationship between predictive coding and temporal invariance learning has
also been suggested in other work, e.g., by Shaw (2006), who argued that temporal
invariance learning is equivalent to predictive coding if the input signals are generated
from Ornstein-Uhlenbeck processes.

In one regard local predictive coding differs from slow feature analysis. The infor-
mation bottleneck approach is continuous in terms of the trade-off parameter 3 and new
eigenvectors appear as second order phase transitions. The weighting of the eigenvec-
tors is different in that it depends on their eigenvalue (Fig. 7.3). This can be important
when analyzing or modeling sensory systems where available band-width and hence,
resulting signal-to-noise ratio is a limiting factor. For local predictive coding, available
bandwidth, e.g., number of neurons, should be attributed according to relative ampli-
tude, whereas slow feature analysis accredits the same bandwidth to all features.

We emphasize that our approach is not directly applicable to many real world prob-
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lems. Our derivation is restricted to Gaussian variables and linear mappings. Both
restrictions are not needed for SFA. Note that an extension of linear local predictive
coding to non-Gaussian input signals would also capture the case of nonlinear process-
ing, because after a nonlinear expansion, the problem can be treated in a linear fashion.
Usually nonlinear SFA corresponds to linear SFA after a nonlinear expansion of the
input signals. In this sense nonlinear SFA can be regarded as the Gaussian approx-
imation to the full non-Gaussian local predictive coding problem on the nonlinearly
expanded input. This argument - together with effective nonlinear SFA models of the
visual system (Berkes and Wiskott, 2005; Franzius et al., 2006) - suggests that sensory
systems are tailored to extract (relevant) predictive information. For further research,
we suggest to compare local predictive coding and slow feature analysis to generative
hierarchical models for learning nonlinear statistical regularities (Karklin and Lewicki,
2005; Schwartz et al., 2006).

The restriction on the immediate past implies that SFA does not maximize predic-
tive information for other than first order Markovian processes. The generalization, i.e.,
relating the infinite past with the infinite future, can be best framed in terms of linear
dynamical systems. Work on this topic is in preparation. Finally, predictive coding is
not a stationary property of the evolved sensory system but dynamic and adapts with
input statistics (Hosoya et al., 2005). A plausible extension of our work would aim to
incorporate dynamic properties.

SUMMARY AND OUTLOOK:

Local predictive coding is defined as a tradeoff function where information about the
next input is maximized such that information about the current input is minimized. We
solve this problem for multivariate Gaussian signals and show that resulting eigenvec-
tors are identical to those of linear slow feature analysis (SFA). Hence, we demonstrate
that two seemingly different analytical frameworks have a joint basis. The predictive
coding ansatz will be generalized in chapter 9.

tex
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Sufficient system design

Engineers are concerned with the appropriate design of a system translating input into
a target output. Living organisms, in contrast, need to learn and evaluate environmental
statistics such that they can act and react to achieve their objectives such as surviving,
reproducing or slaying the tedious fly. Engineers and biologists, hence, seem to deal
with different concepts, but in fact both corresponding disciplines are significantly in-
tersected. To see this, let us separate the organism’s objective into two problems. The
first is to extract the relevant statistics of the environment. The knowledge of these
statistiscs is then the basis for the second problem: Interact with the environment such
that external statistics are modified to the organism’s advantage. As argued in the first
chapter, predictive information can be interpreted as a low-level characterization of rel-
evant information. That is, for the first problem mentioned above the organism has to
learn the statistics of the incoming data stream such that generalization, e.g., extrap-
olating into the future data stream, is possible but overfitting is avoided. Learning,
however, can be seen as finding a model that describes or even explains observations
- with the usually unspoken assumption that the model will continue to be valid in the
future (Bialek et al., 2001). Furthermore, Rissanen pointed out that learning a model
to describe a data stream can be interpreted as an encoding of those data (Rissanen,
1989). The number of bits required to encode the model parameters is called model
complexitiy (Rissanen, 1996). This measure coincides with predictive information,
the information the past of a data stream carries about the future of a data stream, as
defined in Bialek et al. (2001)!. Indeed, predictive information can be regarded as a
general measure for the complexity of a data stream, independent of parameterization
(Bialek et al., 2001). Altogether, in the framework of prediction, model estimation and
encoding are equivalent.

The relationship between input and output data streams can generally be charac-
terized by dynamical systems. Denote the input with u(z) and the output by y(z). A

'Note that Bayesian parameter estimation with a universal prior is also equivalent to the method of
Rissanen (Vitanyi and Li, 2001).
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dynamical system in continous time is given by the functions f and g:

x(t) = f(u(t)) (8.1)
y(t) = g(x(t)) = g(f (u(?))) (8.2)

where x(t) is called the state space. In the language of dynamical systems, the prob-
lem of parameter estimation is called system identification, i.e., identification of the
functions f and g. Dynamical systems are attractive because they provide a general
description for continous and discrete data streams or time series. Crucially, we will
see that the state space can be regarded as the bottleneck space summarizing the infor-
mation that the past provides about the future.

Our primary concern here goes beyond the problem of system identification but
also asks the question of sufficient system design. In general, coding a stochastic data
stream — or equivalently estimating a model — with arbitrary precision requires infinite
bits of information. Hence, we can hypothesize that the problem for a living organism
in a stochastic and complex environment is to find an approximate but sufficient model
of natural (spatio)-temporal statistics. Complexity of the environment can already be
operationalized as the predictive information in the class of occuring natural signals
(Bialek et al., 2001), and, as we will see later, high complexity may be related to a
high-dimensional or even infinite dimensional state space of the associated dynamical
system. Sufficiency of a model means that those aspects are extracted that are relevant
for the organism but other aspects are ignored. For the purposes of this PhD-study, we
will focus on low-level signal extraction. By this we mean, that sufficient model design
is not so much concerned with the content of the signal but only with predictability.
Hence, the assumption is that a sensory system with limited bandwidth will focus on
extracting those components of a signal that carry most information about the future.
The advantage is that we don’t have to specify ad hoc what is relevant for a specific
animal. However, it is clear that predictability alone cannot explain sensory process-
ing. In the grasshopper, for example, intraspecific signal patterns are reliably encoded
whereas human speech, clinking across the field, probably has no accurate representa-
tion in the auditory system — although human speech carries a high amount of predictive
information.

In this chapter, we introduce the concept of model reduction, i.e., the problem of
finding a low-dimensional but somehow good approximation of the high-dimensional
original model. The particular instances of balanced model reduction and sub-space
based identification methods will provide background for the subsequent chapter. There,
we will focus on the question of how to reduce or design a system that uses the mini-
mal amount of information between the past of a signal and an internal representation
such that this internal representation carries sufficient information about the future of a
signal.

The above mentioned second problem of the organism, manipulating the natural
statistics to its own advantage, is not treated here. However, an extension of system
theory, dynamical systems with control feedback loops, may constitute an appropriate
extension that treats this second problem mathematically.
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8.1 Linear systems

From hereon, we will focus on linear dynamical systems. In this section, we will define
linear systems and introduce important properties. Some properties will be of use in
chapter 9, other properties will help to understand the underlying concept. Proof of
individual statements of this section can be found in (Chen, 1999).

A system is said to be a linear system, if any input-output pairs (u;(¢),y;(¢)) and
(u;(t),y;(t)) can be combined such that oyu; () + o ju;(t) leads to an output oy;(¢) +
o,;y;(¢) where o is a real constant. This is the so-called superposition property. If this
property does not hold, the system is said to be nonlinear.

Impulse response. Any linear system with p input variables and g outputs variables
can be described by

t
y(it)= [ G(t,v)u(t)dr (8.3)

lo
where the system is relaxed at to when the output y() is excited exlusively by input
u(t) with t > ty. The system is also causal as the output y(¢) cannot be influenced by
u(t) with © > ¢. G(t,7) is ¢ X p matrix, called impulse response matrix, with entries

gij(t,’C).

State space. Every linear system has a state-space description (Equ. 8.1+8.2), specified
for continous-time systems as:

x(t) = Ax(t) + Bu(t) , (8.4)
y(t) =Cx(t) +Du(t) . (8.5)
and for discrete-time system as
x(t+1) =Ax(t) + Bu(t) , (8.6)
y(t) =Cx(t)+ Du(t) . (8.7)

The state space x(¢) is n-dimensional, matrices A, B, C, D must be n X n, n X p,
g X n and g X p matrices, respectively. We only consider time-invariant systems, i.e.,
the matrices A, B,C, D are not a function of time. This means that the same input leads
to the same output, independent of when the input is applied.

Transfer matrix. Equation 8.3 is a convolution integral. It is possible to transform this
convolution integral into a simple algebraic equation by applying the Laplace trans-
form, f(s) = [y e ¥ f(t)dt, to 8.3:

y(s) = G(s)a(s) ,

where y(s) and u(s) denote the Laplace transforms of y(¢) and u(¢), and G(s) is the
so-called transfer matrix of the system. The individual components g(s) of the matrix
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G(s) can be expressed in terms of poles p; and zeros z; in the so-called zero-pole-gain
form:
(s—21).-(S—2zm)

S oy P

(8.8)

where for poles: |g(p;)| = ee.
Applying the Laplace transform to the state-space equations (8.4+8.5) yields:

x(s) =(sI —A) "' Bu(s)
(s) =C(sI —A)~'Bu(s) + Du(s) .

These are algebraic instead of differential equations, i.e., differentiation and integration
become multiplication and division, respectively. Hence, the transfer function can be
related to the state-space description as

G(s)=C(sI-A)"'B+D

1 .
_ mC[AdJ (sI —A)|B+D. (8.9)

Equivalence transformation. The state space and system matrices are not unique.
Consider x' = Px where P is an n X n real nonsingular matrix. Then the new state space
equations

with A’ = PAP~!, B’ = PB, C' = CP~!, D' = D has the identical input-output rela-
tion as the original system (Equations 8.4 + 8.5). The systems are called algebraically
equivalent and x’ = Px is called an equivalence transformation.

Bounded-input bounded-output stability. An input u(7) is said to be bounded if u(t)
does not diverge to positive or negative infinity. A system is called bounded-input
bounded-output (BIBO) stable, if every bounded input results in a bounded output. A
system with impulse response matrix G(¢) is BIBO stable, if and only if every g;;(t) is
absolutely integrable in [0,):

| leito)idr <.

Equivalently, every pole of Equation (8.8) must have negative real part such that the
transfer function is integrable. Using Equation (8.9), one can deduce that every pole
of G(s) is an eigenvalue of A. If every eigenvalue of A has a negative real part, then
the associated continuous-time system is BIBO stable. However, not every eigenvalue
of A is a pole due to possible cancellation in Equation (8.9). A stronger condition is
asymptotic stability: The equation X = Ax is called asymptotically stable if and only if
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all eigenvalues of A have negative real parts. That can be seen by inspection the solu-
tion of x = Ax: x(t) = xpe’.

Controllability. Consider the state-space equation X = Ax + Bu with n state space
dimensions and p inputs. Then the pair (A, B) is said to be controllable if for any initial
state xo and any final state xy there exists an input such that xy is transferred to xy in a
finite time. Equivalently, the so-called n x np controllability matrix

Ucln=( BAB...A""'B)

must have full row rank n. Furthermore, if all eigenvalues of A have negative real parts,
the unique solution of
AWc +WcAT = —BBT

is positive definite. W is the so-called controllability Graminan and can be calculated
as

We = / ABBT A .
0

Observability. Consider the state space equations 8.4 + 8.5. These equations are said
to be observable if the unknown initial state x( can be determined by knowledge of u(t)
and y(¢) in [0,7] with ¢ < co. Equivalently, the observability matrix

C

ol = CA

can-1
has full column rank n. If all eigenvalues of A have real negative part, the unique

solution of
Wo =ATWy+WpoA = —CTC

is positive definite with Wy being the observability Gramian:
Wo = / AT et
0

An intuitive interpretation and use of controllability and observability matrix will be
given in the next section.

Minimal realization. A state space system description (A, B,C, D) is said to be a mini-
mal realization if (A, B) is controllable and (A, C) is observable. Hence, the state space
dimension dim(x) is as small as possible.

Equivalence of continuous and discrete time systems. It is important to realize that
most results in continuous time are also valid in discrete time. Mathematically, this is
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due to the fact that functions analytic in the half-plane correspond to functions analytic
in the unit disc (Hoffman, 1962). In our case, this means that asymptotic stability is
guaranteed if all eigenvalues of A have real negative part for the continuous case and if
all eigenvalues of A are inside the unit disc for the discrete case.

Note that we limit ourselves to linear time-invariant systems, thereby excluding many
relevant non-linear or time-varying systems. However, the assumption of time-invariance
is a good first approximation. Furthermore, nonlinear system can, under certain condi-
tions, be linearized.

8.2 System identification

With our knowledge of linear systems we can now approach the concept of linear sys-
tem identification. One can identify two classes of approaches towards system iden-
tification (Gevers, 2003). The first one is based on a Maximum Likelihood approach
and was proposed by Astrém and Bohlin (1965). This approach is usually applied
to autoregressive moving average models with exogeneous inputs (ARMAX). Using a
prediction error framework, one can use the Least Square method (LS) to minimize the
error between predicted and original output. This method is fully developed textbook
knowledge (Ljung, 1987).

Here, we will focus on the second class — in its advanced variants called subspace
system identification methods. As subspace based methods are based on regression,
they usually carry relatively low computational costs. Model order can be estimated di-
rectly. The method can be traced back to Ho and Kalman (1966) and is developed in dif-
ferent variants as canonical variate analysis (CVA) in Larimore (1983), numerical meth-
ods for subspace state space identification (N4SID) in Van Overschee and De Moor
(1994) and multivariate output error state space (MOESP) in Verhaegen (1994). Their
key idea is based on the state space description of linear system or ARMAX models
where the different variants give different weigthings to the state space structure (van
Overschee and Moor, 1994). The state space summarizes all information of past input
that is useful for mean square prediction. In the following, we introduce the main idea
of subspace-based system identification by first presenting the main idea of Ho and
Kalman (1966) and then giving the general procedure

The problem of system identification is defined as finding the system matrices
(A,B,C,D) given input u(z) and output y(¢). For this purpose consider the linear re-
lation of a discrete-time system:

Yfur = Hupast

where the input past is given by e = [tto u—1 ... u_,] and the output future by ys,; =
[Vo ¥1 -.- yn] and n — oo, H is the so-called Hankel matrix, relating past and future of
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the system. The Hankel matrix has the following structure:

ho hi hy ... h,—q
h hy hy ... h,

H=
hy hsy hg .. hy1

and the invidiual components can be estimated from the observed covariances: h; =
%Zi\’: Bk Vel and N — oo, A variety of methods exist to efficiently compute the Han-
kel matrix (Lim et al., 1998). We will encouter a particular method suitable for our
purposes in the next paragraph. It is crucial to realize that the Hankel matrix is related
to observability and controllability matrix in the following way:

CB CAB CA?’B ... CA"B
CAB CA?’B CA3B ... CA"TlB

H = [ollcln = CA2B CA3B CA*B ... CA"2B

as can be deduced from
X0 = [JC]nupast
Yru = [Jolnxo -

Equivalently to the Hankel matrix in discrete-time systems, a Hankel operator for conti-
nous time systems with finite rank can be defined. For both discrete and continous-time
systems, the eigenvalues of the Hankel matrix or operator, respectively, can be com-
puted from the product of Gramians (Glover, 1984; Chen, 1999). We will focus on
another approach, computing the eigenvalues, called Hankel singular values, directly.

Ho-Kalman algorithm. How can the system matrices (A, B,C, D) be inferred from H?
The Ho-Kalman algorithm takes the following approach:

+ Compute the SVD: H = ULV where X is identical to the Gramians in the so-
called balanced realization, as we will see in the next section (Equ. 8.11 + 8.12).

« Factorize: H = USVT = U222y 7 = [Jolnl[Jc]n

* Solve for A,B,C, i.e.,
B = [JC]I C= [JO]I

To compute A, define the submatrices [Jc]1.,—1 and [Jc]a:, obtained from [J¢], by
deleting the last and first row respectively. Then

A= [Jc] T:n—l [JC]Z:n

where ()" denotes the Moore-Penrose pseudoinverse.
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Subspace identification. The main idea underlying the state-space approach is the fact
that if the state space were known, the state space equations (8.6 + 8.7) could be used
to determine the system matrices. The crucial problem then is to obtain a good estimate
of the state space.

First, consider the estimation of the system matrices from the state-space descrip-
tion. Define the tail matrices Y;, X; and U;:

Yo i=[ye, Y1, Ve42, -]
X ::[xlaxt+17xt+27~~~]
Ut ::[l/l[,uz+1,uz+2, ]

Then every sample trajectory satisfies:

(5)=(¢5) ()

Then we use linear regression and solve by the Least Square method:

min — X+1\ (A B X
ABCD Y; C D U,

obtaining the estimates

A A T T 71
A B L l Xt+1 Xt l Xl‘ Xt
¢C D) N Y, Ur N Ui U

with N being the number of samples.

Canonical Correlation Analysis (CCA) was introduced by Hotelling (1935)
and will be used for state space identification. Aim is to find a suitable basis
for crosscorrelation between two random variables. Given U and V, two zero-
mean random variables of dimension m and n. Find two special orthonormal
bases (u1,...,un) for A and (vi,...,v,) for B such that E(u;,v;) = p;9; ; for
i, j <min(n,m). Requiring the p;’s to be nonnegative and ordered in decreasing
magnitude makes the choice of bases unique if all p;’s are distinct. A specific
implementation is given below.

But how can the state space be obtained from input and output data? In the following,
we give a common variant of Canonical Correlation Analysis applied on the input past
and output future, providing a so-called balanced state space.
* Define input past and output future at time :
T T T T
Upast :[u_l 9 Ixt_z, I/t_3...]

qut :[ygaleayga ]T
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* Normalize with Cholesky factors. Cholesky factors are given as LpastLgast =
Y, = Il\,Upas,UpTas, and qu,Lfm =X, = ﬁYmeme. Normalized variables are
then computed as: U past = L;alstU past and )4 fur 1= L]TMIZYfm.

¢ Perform SVD:

1, .

—Yr,U

N fut past = ZyMViW .

A DN N A Al
« Compute the state space: X; := VI Uy = VTLpalstUpast and balance X/, = 22X,
A AT A
such that I%X’,X’t =2.

The rows of VTL;alst can be obtained directly as the left eigenvectors of Xy, X lZuyZ; !

with p?, the square of the canonical correlation coefficients, as eigenvalues (Borga,
1998). A formal proof of this relationship is provided in (Katayama, 2005). Further-
more, note that the mutual information between input past and output future of stochas-
tic time series is given as (Akaike, 1976):

1
1-p?

1 n
I(Upast Ypu) = 5 ) log (8.10)
i=1

We will come back to this result in the next chapter.

8.3 Model reduction

If models are high-dimensional, engineers are often interested in suitable low-dimensional
approximations to ease implementation. Similarly, organisms may also focus on ex-
tracting a low-dimensional representation of signal statistics. In system theory, this
problem is called model reduction.

First, we introduce the general perspective (Obinata and Anderson, 2001). Consider
the state space equations (8.4 + 8.5). Decompose the system matrices as

Al A B
(AZI Axn ) ( B ) (G &)

The truncated reduced order model is then defined as

Xr(t) =Ap1x,(t) + Bru(t) ,
yr(t) = Crx,(t) + Du(t) .

With Ay an r X r matrix, the order of the model is r. What is the quality of such a
reduced model? One suitable measure is the additive error that is given by the difference
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of the transfer functions:

G(s)—G.(s)=C(sI—A)"'B+D—C (sl —Ay)"'B,—D
=C'(s)A™ ()B'(s) ,
A(s) :=sI — Ay — Apy (sT — A1) Ao,
B'(s) :=Aai(sI —A11) " 'Bi + By,
C'(s):=Ci(sI—A1) A +C .
This error is dependent upon the state coordinate basis of the system. Thus the art of
model reduction is the identification of an appropriate basis. Recall that (A,B,C) can

be replaced with (A’ = PAP~!, B’ = PB, C' = CP~!). Defining Py as the first r rows
of P and Py, as the first » columns of P! one obtains

A, =P APy, B,=PB, C,=CP

Thus equivalence transformation, i.e., change of basis, and model reduction can be
done in one step. In the following, we briefly discuss some important examples.

Mode truncation. A particular variant is called mode truncation. Here, one selects the
transformation P such that A is diagonalized and selects the most dominant eigenvalues
to keep the truncation error low (Aoki, 1968).

Hankel norm approximation. Hankel norm approximation is important from an ana-
lytical point of view, as optimal approximations can always be achieved in this method.

The Hankel norm is given as as

[Hull, e 12(0,00)

IG(s)|lr = sup
u € L2[0,0) Hu||uEL2[O,°°)

In his seminal work, Glover (1984) showed that it is always possible to find a reduced
system such that ||G(s) — G,(s) ||z is minimized.

Balanced truncation. For the purpose of this thesis, balanced truncation will be cru-
cial. Let us obtain a particular realization, called balanced realization.

Consider the equivalence transformation A’ = PAP~!, B'=PB, C'=CP~!, D'=
D with P a real nonsingular matrix. Then it is straightforward to show that the corre-
sponding Gramians transform as

Wt =pPWePT W, =P WPt

Every minimal realization can be transformed into a so-called balanced realization, i.e.,
controllability and observability Gramian are diagonal and equal. Such a transforma-
tion can be obtained as follows:
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* Compute the singular value decomposition (SVD) of Wyp: Wp = UXU T where X
is the diagonal matrix of singular values of Wp.

 Change basis with P = U ¥, Hence,
/ ' 1 1T
W,=1  W.=UZiWzuT .
« Compute the SVD W/ = VZ?VT,
* Change basis with P = =2V, Then

Wl =z iyTys2yTy-i =y 8.11)
W) =x:vIIvEr =%, (8.12)

(% 0
>=(% %)

obtaining X as controllability and observability Gramian after truncation at rank r if
the reduced order model is asymptotically stable. It is crucial to note that the basis for
balanced realization is already obtained by the balancing step of system identification
by canonical correlations analysis applied on past input and output future. Indeed, both
subspace-based system identification by CCA and balanced model reduction ulitize
Hankel singular values. Thus, including order selection into this CCA approach allows
to combine the seemingly different issues of system identification and model reduction.

Finally, consider the error bound for balanced truncation. As shown by (Glover,
1984), the infinity norm of the absolute error is bounded as

We can write

n
IG(s) = Gr(s)[l.. <2 Y O .
k=r+1

SUMMARY AND OUTLOOK:

In this chapter, we introduce linear dynamical systems theory. We explain some impor-
tant concepts in order to give a framework of dynamical systems theory and to provide a
background for the next chapter. In particular, we describe the class of sub-space based
system identification methods. For this, an efficient estimate of the state space can be
obtained by canonical correlation analysis. The complexity of the model, i.e. here: the
dimensionality of the state space, can be reduced by model truncation methods.

tex
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The Past-Future Information
Bottleneck of Dynamical Systems

Biological sensory systems need to encode and compress information simultaneously
and in real time. As argued in the chapters 1 and 7, they should make use of tempo-
ral patterns of incoming signals such that the most predictive information is extracted.
From an information-theoretic perspective, this can be regarded as joint lossy source-
channel coding relying on adaptive predictive coding. Organism should do so such
that sufficiently accurate prediction allows them to behave with resulting positive ben-
efit while coding costs, e.g., energy ressources or requirement on the architecture of
the neural system, are kept low. This is comparable to learning theory, where a com-
plexity measure is desirable to quantify a preference for simpler models (Bialek et al.,
2001). Hence, the extraction of sufficiently accurate predictive information can also
be regarded as the construction of an internal model mirroring external signal statistics
but with limited complexity. Predictive information itself is a property of the observed
data stream. This section’s work aims not only to characterize predictive information
in a signal, but to find which properties of the past are those that are relevant and suffi-
cient for predicting the future. In particular, we describe the data stream as a dynamical
system and seek to isolate the most predictive components of the past, relating them
to parameters of the underlying system. In this framework, the concurrent tackling of
system identification and model reduction is equivalent to joint lossy source channel
coding in the temporal domain. In contrast to efficient sequential coding (Equ. 6.2),
only relevant (here: predictive) information but not stochastic fluctuations is encoded.
Furthermore and unlike Bialek et al. (2001), our approach allows an identification of
predictive information independent of observation time 7.

The information bottleneck (IB) method, as introduced in chapter 6, is ideally suited to
extract approximate minimal sufficient statistics (Tishby et al., 1999). The two quanti-
ties of IB, namely compression level and relevant information, are complementary and
in general we need to trade one for the other. The tradeoff between the two quantities
is controlled by the [ parameter and makes apparent a natural order: By increasing

79
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B one unravels features (“statistics”) in X that are informative about Y, where more
informative features are revealed first.

Hence, the IB method is a natural approach to find the relevant past-future predic-
tive features, defined above. In particular, given past signal values U, we are interested
in compressing the information of the past into a model ¥ r such that information about
the future / (f/f, Yy) is preserved. When varying B we obtain the optimal tradeoff curve
— also known as the information curve — between compression and prediction, which
i1s a more complete characterization of the complexity of the process. Our aim is to
make the underlying predictive structure of the process explicit, and capture it by the
states of a dynamical system. As a first step, we motivate our approach by extracting
the predictive information of a time series. We will see that the state space is the natural
bottleneck for predictive information. Hence, in the main part, we will aspire to com-
press a state space model of a dynamical system to maximize predictive information.
We provide an analytic solution of the linear problem, on the basis of previously ob-
tained results for the IB when the variables are jointly Gaussian (Chechik et al., 2005).
Our results show that as the tradeoff parameter [ increases, the compressed state space
goes through a series of structural phase transitions, gradually increasing its dimen-
sion. Thus, for example, to obtain [little information about the future, it turns out that
one can use a one-dimensional (scalar) state space. As more information is required
about the future, the dimension of the required state space increases up to its maxi-
mum #. The structure and location of the phase transitions turns out to be related to the
eigenvalues of Hankel matrices which we have already encountered in the last chapter.
Crucially, we will use a modified Ho-Kalman algorithm to obtain dynamical systems
with information-theoretic optimally reduced state space. We also clarify the relation
to canonical correlation analysis and characterize the optimal tradeoff function: the
information curve. Finally, we characterize the information curve of the well-known
spring-mass system, thus giving an example to demonstrate the numerical feasability
of the past-future information bottleneck.

9.1 The state space as the natural bottleneck

In chapter 7, we have seen that extracting information about the subsequent time step
can motivate the slowness principle. In this section, we generalize the approach to all
past and future time steps. We want to find

min L : L = [(past,state) — Bl (state, future) .
For this, define

Uy U1

Ur—(k—1) Urtk
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with u; = [uy(t),...,up(t)]T and k — oo. Then, we can formally state the following
optimization problem.

Optimization problem: Predictive coding of time series. Given the signal u; with the
past signal Uy, and the future signal Uy as defined above and output signal X, = AU, +&,
where u; and & are Gaussian with (&), = 0 for t # 1, find the matrix A(B) that
maximizes

min L : Lpc =1(X:;Ur) — B I(Up: X;) -
with 3 > 0.

This is equivalent to (7.8). The subsequent derivation, based on (Chechik et al., 2005),
holds for this case as well. We obtain:

Theorem 9.1.1. Compression of the past into the state-space. The solution to the
optimization problem above for Gaussian input signal u; with X, = A(B)U, +&, is given
by

[ 0;...;0] | g%gﬁg
oy Wi30;...;0 1<B<B5
A(B) - [(XlW1;062W2;0;.. . ;O] é <B< Bg 9.2)

where W; and A; (assume Ay < Ay < ...) are the left eigenvectors and eigenvalues of

ZU,,\UfZ(;pl» a; are coefficients defined by o; = w, ri= W,EUPWI-T, Oisanm

it
dimensional column vector of zeros, and semicolons separate columns in the matrix
.. c __ 1
A(B). The critical B-values are 3§ = e

To obtain an intuition of general predictive coding, we analyze a simple example. As-
sume u, to be a 2-dimensional signal u, = [u;(¢),u>(¢)]” that can be written as a moving
average model.

U1 = Bruy +Bouy 1 +&;

where By and B, are 2 x 2 matrices, &, is a 2-dimensional vector with white noise
& ~ A[(0,1). The concrete example has

0.1 -0.2 05 —-03
Bl_<—0.5 0.2 ) BZ_(O.l —0.9>
Uy depends only on u; and u; 1, i.e., the relevant past is

Up(t) = [ur (t),ua(t),u1 (t = 1),u2(t — 1)]"

Hence, A(P) should be 4-dimensional. Calculating ZUP\ U f.Z{]pl, we obtain 4 eigenvalues
< 1. Then X(¢) = A(B)U,(t) contains all information the past at time ¢ provides for
all future time steps. In our case X(¢) is a 4-dimensional vector. One cannot read out
directly the predicted value #(z + n) of future time steps ¢ +n from X (¢). However, one
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Y ‘ W \\, “M A ) m
L

Figure 9.1: Time series with dynamics of Eq (9.3). Each panel represents the time
course of one of the two components of vector ;.Blue is the original time series, red the
optimal 1-step ahead prediction, green the optimal 2-step ahead prediction and black
the optimal 10-step-ahead prediction. The n-steps-ahead prediction utilizes only those
states that date back n-steps or more.

0.5 T T T T T T T

Prediction

0 é 1‘0 1‘5 26 2‘5 ?:O 3‘5 40
Time steps into future

Figure 9.2: Prediction with respect to time steps. Prediction is defined as 4=—<E>

where a is the average absolute amplitude of the timeseries a = | < u;(¢)| > and E the
average absolute distance of the predicted time series to the original one.
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can extrapolate ii(f +n) by established methods of parameter estimation such as the
conditional least squares (CLS) estimation. The CLS estimate P, : ii(t +n) = P,X ()
is obtained by P, = (X/U/.,,)(X/X;)~! where X; is the state space tracectory and Uy,
the time series rescheduled n steps ahead, similarly to Equ. (9.1). Some example
predictions are depicted in Fig. (9.1). How good is the prediction after n steps? Noise
deteriorates the quality of prediction. In fact, predictive quality decreases exponentially
with time steps (Fig. 9.2). Note, that in contrast to the Kalman Filter, no updating
algorithm is required. For an n step prediction, one simply has to estimate P,. Crucially,
this naive IB ansatz on time series results in a compressed variable X (¢) that can be
interpreted as the state space. This should suffice to motivate a direct information-
theoretic treatment of dynamical systems. In fact, as we will see, this way of state-
space identification corresponds to subspace-based system identification specified as
canonical correlation analysis of the input past with the output future. We could identify
the reduced systems based on theorem (9.1.1) and using least square estimation as
introduced in chapter (8.2). However, here we chose a different approach and apply
the information bottleneck directly on the Hankel matrix between input past and output
future.

9.2 System reduction keeping predictive information

We turn to solving the past-future information bottleneck optimization problem of data
streams:

min L : Lppip = I(past,model) — BI(model, future) . 9.3)

in the general state space description. Again, we will rely on the Gaussian information
bottleneck (Chechik et al., 2005). We focus on the discrete-time case where the lumped
linear dynamic system with process noise can be written as follows:

Xt+1 — Axt—i-But (94)
i = Cx;+Duy 9.5)

Here u,xand yare px 1,mx1and g x 1 vectorsand A, B, C, D are m X m, m X p, g X m,
and g X p matrices, respectively. We denote the system parameters given by the above
equations by DS. Our focus is on the bottleneck function of the state space, and, hence,
we set D = 0, as it directly links the input to the output. Recall that the dimension m of
the state space corresponds to the number of poles of the transfer function (Chen, 1999).
Since we are only interested in the effect of past input on future output at the present
moment ¢ = 0, we clamp the input to zero for times ¢t > 0. Extensions, including also
input future and output past into the analysis, are possible using the same techniques
as, e.g., in Lim et al., 1998. However, as we gain only numerical accuracy in parameter
estimation but no additional insight, we here stick to the direct input-output relation.
Assuming stationarity of the input signal, we can focus on the case where the past
1s measured up to r = 0, and the future for # > 0. Our aim is to find an optimal model
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output y; that compresses the information of the input past but keeps information on the
output future. The model output is specified as a function of f3:

X1 = Ar(B)xAt+Br(B)ut 9.6)
5 = C(B)x+Dr(Pu +§ . (9.7)

Hence, the IB Lagrangian can be written as

in L:L=1U,,Y;)—BI(Y:,Y 9.8
in (Up,Yr) = BI(Yy, Yy) (9.8)

where the input past, the output future and the model future are given by

U Vit1 Vrs1

U, — U1 Y, = Vi42 7, = V42
p - ) - 9 -

U (k—1) Vi+k Vrtk

with u, = [ug (t), ..o, ttp ()17, 30 = D1(2), -, 3O 51 = F1(2), -, 94(1)]7 and k — oo.
The Lagrangian is optimized with respect to the matrices of the reduced system that
are, in fact, a function of the tradeoff parameter B: DS" = (A,(B),B,(B),Cr(B)). These
will be derived in what follows.

We minimize Equ. (9.8). First, we can rewrite the mutual information quantities in
terms of differential entropies.

L =h(¥y) = h(¥7|Up) — Bh(Yr) +Bh(¥r|Yy) 9.9)

For differential entropies, h(X) = — [y f(x)log f(x)dx. In particular, for Gaussian vari-
ables

1
h(X) = 51og(2ne)d Zx|

where |Zx| denotes the determinant of Xy and Ty := (XX7), is the covariance matrix
of X Cover and Thomas (1991). Hence, we have to find the covariance matrices of the
quantities in Equ. (9.9). Recall that

xo = [JclUp ,
Yr = [Jolixo ,

where the m x (p * k) controllability matrix and the (g k) x m observability matrices
are given, respectively, by

C

Uclk=( BAB..A*'B) | ok = CA

CA%—l
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Then we can calculate the Hankel operator

CB CAB CA?’B .. CA*B
CAB CA?B CA3B ... CAFtlp

H = oll/clk- = CA2B CA3B CA*B ... CAK2B

and thus Yy = HU,,. Relying on Equ. (9.6+9.7) and adding model noise for regulariza-
tion (Chechik et al., 2005), we obtain ¥; = H(B)U, + & for the model future. We seek
to identify H(f), or equivalently, A,(B), B-(B), Cr(B). Based on the Hankel operator,
we compute Xy = H (B)Zy,H(B)" +X¢ and Xy, = Ze- The last covariance matrix is
given by:

Y. ¥, -1 .
ZYlef o ZYf ZYﬂYfZYf ZY_,-,Yf

= H(B)Ly,H(B)" + Xz — H(B)Lu, v, Ty, Iv,.v,H(B)"

= H(B)Zu, v, H(B)" +X

where we used Schur’s formula in the first and last step (Magnus and Neudecker, 1988).
Neglecting irrelevant constants, Equ. (9.9) then becomes

L= (1-B)log|H(B)Zuy,H(B)" +X¢| —log|Ze| +Blog |H (B)Zy, v, H (B) +X|

Lemma A.1 in Chechik et al. (2005) states, that without loss of generality, we can set
Xg = I. Then minimizing the Lagrangian gives
dr

dH(B) (1=B)(H(B)Zy,H(B)")~"2H(B)Zu, +B(H(B)Zy, )y, HB) +1)~"2H(B)Zy,y,

Equating this to zero and rearranging, we obtain conditions for the weigth matrix A.

Bk By, v, HB)T + 1) (H(B)E0, HB)T +1) " |H(B) = H(B)Eu, , Z5,)

B
(9.10)

Let us denote the singular value decomposion of the Hankel matrix as
H=WTLyv . 9.11)

Then

Theorem 9.2.1. The past-future information bottleneck of dynamical systems (PFIB).
The solution to Eq (9.10) is given by

HB)=WT'zy(B)V, (9.12)

. 2(B—1)—1
where 25 (B) = diag(c1(B),02(B),...,6m(B)) and 6;(B) = # and ri = vy, vl
is the norm induced by Xy, and v; are row vectors of V.
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Proof. Let us first calculate Xy, Yf.Z{,pl, using Schur’s formula:

Sy, =1—H (HH" +1)"'H

=I1-VIzgwWlzyvvlizyw +n-'wlizy,v

=1z wwlsygvvisyw +nwiz v

=I1-[1+Vigv)™!

=viz 2va+vizgv)™!

= [I+VTE Vv v

=(I+V'zgv)!

=via+z)v)!

=viia+z)v. (9.13)
Hence, Xy, |y, = VT (1+X2,)~1V¥,. Consider the positive definite bilinear form induced

by Xy,
ViZUPV? = ri&"j

where the v; are the row vectors of V. Denote R as the matrix with r; on its diagonal.
We substitute Equ. (9.11 + 9.12 + 9.13) into Equ. (9.10) and obtain

%[(WTZH(BMHE%)1vzu,,szH<B)W D)W Zu BV, VI Ea(BW +1) "W Lu (B)V

=Wisy(BVVI (I +3Ih) Ve E, &
B VTS (B) 1+ 55 RE(BIW + )W T (BIRY 1) W Za BV
=WiEy(B)I+25)"'V.

By left-hand multiplication with W, inserting W7 W between the brackets and right-
hand multiplication with VT we obtain

B+ 2 RE(B) + ) En (BPR+ 1) Eu(B) = Zu(B)I+ Th)

In this form, all matrices are diagonal and we can proceed in solving the individual
Hankel singular values.

BEI (z(%ﬁff “) <G(B);n+1) ) 1+lc% -

After some reshaping, we obtain for 6(f)?:

o= B -1 OED.

Ti
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The reduced Hankel operator can be translated into reduced matrices A(f), B(B) and
C(B) by the algorithm of Ho and Kalman (1966). Define y(B)) = [ZH(B)ZIQI > and

Ve (B)]n = Y(B)Jcln o(B)ln = [Jola¥(B). We can then factorize H(P) into H(p) =
Jo(B)]x[Jc(B)]n. Then

B,B)=[cB)1  CB)=[oB) - (9.14)

Define the submatrices [Jc(B)]1:n—1 and [Jc(B)]2:, obtained from J¢ by deleting the last
and first row respectively. Then A(f) can be computed as

Ar(B) = [Jc(B))Tp_1 Ve (B2 (9.15)

where ()1 denotes the Moore-Penrose pseudoinverse. Similar to balanced model trun-
cation (Gugercini and Antoulas, 2004; Katayama, 2005), the PFIB procedure also relies
on Hankel singular values. The difference is continous weighting in PFIB versus dis-
crete weighting in balanced model truncation. Numerical evidence of the Ho-Kalman
construction is provided in section 9.4.

9.3 Relation to CCA

. . . . . -1 -1
In canonical correlation analysis, the eigenvectors and eigenvalues of nyUpny ZUprZU,,
are computed. In the past-future information bottleneck the target matrix is Xy |y, Xy, pl =

I— nyUpZ;f 1ZUpnyl}pl. Hence, eigenvectors of both procedures are identical (Chechik
et al.,, 2005). The eigenvalues of CCA, called (squared) canonical correlation co-
efficients, are denoted as XiCCA = p%. The eigenvalues of ZUP‘ny[]: can be calcu-
lated from Equ. (9.13) as 7&{3 FIB — (1+ Gi)_l. Hence, the relationship between the

Hankel singular values and the canonical correlation coefficients can be calculated by
(14+06;) ' =APFIB =1 —ASCA = 1 —p? to give

2
loF ,
L or o’ = plz.
1 —p;

1

9.4 Information curve of predictive information

The information curve illustrates the tradeoff between model accuracy, here: predictive
information I(¥ r,Yr), and model complexity, here: required or compressed information
from the past I(U,, Y r). This curve is similar to the rate-distortion curve of lossy source
coding (chapter 6.5). As can be deduced from Chechik et al. (2005), the theoretical
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information curve for PFIB is given as

I(Up, ¥y)p Z log (B 9.16)
. n(B) 2
(Y5, Yp)p = 1(Up, Vi) = 5 lzi logP o
"®  B_1
=3 L log B (67 +1)

1
23 B 1-p;

where n(P) indicates the maximal index i such that § > 1+ é.

As B — oo the predictive information converges to

1 n

Y Yi)ew == 0

(Y7, Yp)eo = 3 ; s
Assuringly, this is identical to the Akaike result on the mutual information between past
and future of a stochastic system (Equ. 8.10, Akaike, 1976).

In the next section, we will investigate one particular system and show numerically

that the reduced systems given by equations (9.15+9.14) lie indeed on the information
curve.

9.5 The spring-mass system

As an example system we apply the past-future information bottleneck to a spring-mass
system with two different masses, both fixed with a spring k; at the wall, a spring k>
connects the two masses. Two forces u; and u, perturb the masses such that they are
displaced by y; and y, from their idle position (Fig. 9.3). This can be modeled as a
dynamic system with A, B,C as

0 1 0 0 0O 0
—(kitka) —c k. 0 1 9
— mp mp mp — mp
A 0 0 0 1 » B 0O O ’ ©9.17)
k —(ki4+ky)  —¢ 1 .
m 0 Tm m 0 5

For the frictionless system in Fig. (9.3), c = 0. The input is given by the forces u =
[u1,us]”, the output by the resulting displacement y = [y, y2].
The two-dimensional output yy,y, represents the displacements of the two masses.
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Figure 9.3: Spring-mass system without friction.

We calculated reduced realizations for a set of different B-values. The different
reduced realizations correspond to points in the information plain spanned by (1,4, X)
and I(x,y . ). The coordinates can be calculated as follows:

I(“past7x> = log ’H(B)HT<B) _'_I’
1(x,Y fur) = 1(upast, x) —log |[H(B)H" (B) — H(B)H" (HH™ +1)"'HH (B) +1|

The points for some realizations are represented as red crosses in 9.4. The theoretical
information curve as given by Equ. (9.16) is displayed as gray line in 9.4. We see
that all sample realizations lie on the optimal information curve. This is expected by
construction and confirms the numerical implementation.

The Hankel matrices have finite dimension — for numerical purposes. The dimen-
sion scales with time 7', the time window of past and future that are correlated, com-
parable to (Bialek et al., 2001). In particular, a system with friction is correlated only
over finite time, the information curve levels off, solid line. A system without friction
has eigenvalues on the unit circle, the Hankel matrix does not decay with time. Hence,
the information curve does not level off as a function of T (Figure 9.5).

9.6 Discussion

We will summarize the results of this chapter in a procedure that implements system
identification and model reduction based on the information bottleneck method. We
assume the observation of input and output data streams in time.

1. Perform CCA on the covariance matrix between input past and output future and
calculate the state space.

2. Obtain system matrices by regressing state space on input past and output future.

3. Compute the Hankel matrix via observability and controllability matrices.
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0.35

‘ 1‘0 1‘5 2‘0 2‘5
I(X;U

)

Figure 9.4: Information curve for the spring-mass system. The dynamics are
given by the matrices in Equ. (9.17) and the following parameters: m; = 5; my =
sqrt15; ki = 1; kp = 0.5; ¢ = 0. This particular system has Hankel singular values
o1 = 0.3358; o, = 0.3109; o3 = 0.2374; o4 = 0.2103. The reduced system (red
crosses) all lie on the information curve as given by the Hankel singular values. This
demonstrates the numerical feasability of the past-future information bottleneck.

past

4. Calculate the Hankel singular values.

5. Obtain the reduced system by modifying the Hankel singular values according to
a given constraint.

There are two possible perspectives. At the one hand, we may have a memory con-
straint, i.e., the information that we can keep about the past is limited. Via the infor-
mation curve, we then obtain the maximal predictive information conditional on this
limitation. On the other hand, we may impose a sufficiency requirement, stating that
only a certain amount of predictive information is needed for a particular task. In this
case, we can use the information curve to find the minimal memory capacity needed
to achieve the required prediction accuracy. In fact, the information curve makes only
sense if both dimensions, memory capacity and prediction accuracy, have some sort
of soft or hard constraints or, equivalenty, cost/benefit functions. For example, storage
costs could increase linearly with memory capacity, whereas the benefit of additional
predictive information could level off.

From the perspective of an organism, the algorithmic procedure above is not needed.
The animal might be interested in an internal model of some kind of external data



9.6. DISCUSSION 91

18 T T T T T T T T
-
= = Springmass w/o friction e” -
161 L= Springmass with friction . - i
-
s
-”
.”
14 . . B
-
s
.
. e
12 . B
. ’
+— " L4
&= 10f v |
>— L4
- L4
’
X st . |
— 4
_— P
L4
L 24 a
6 L4
4
4
L 4 a
4 4
4
4
L 4 i
2 L4
4
4
0 | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Figure 9.5: Predictive information as a function of time.

stream. Its nervous system could simply perform PFIB directly on the past and future
of the data stream, as in section (9.2), and adjust and weigh the individual state space
dimensions according to 6;(B) or, equivalently, its associated canonical correlation co-
efficient.

From a technical point of view, results of this chapter are related to an immense
quantity of literature. In fact, methods related to canonical correlation analysis of dy-
namical systems or time series can be found in the different fields of signal processing,
machine learning, econometrics, neural networks, and dynamical system theory. Un-
fortunately, there is no consensus on notation and researchers are not always aware of
the work in neighbouring field. Likewise, I cannot claim to have absorbed all or even
the most part of the literature.

In a similar spirit to our results, the use of information between past and future for
model selection has already been employed by calculating the information either with
canonical correlation coefficients or by spectral densities (Akaike, 1976; Jewell and
Bloomfield, 1983; Li and Xie, 1996; Li, 2005) and can be traced back to Gelfand and
Yaglom (1959). Soatto and Chiuso (2000) consider discrete-time stochastic processes,
i.e., here the input is not entirely known. A maximum likelihood ansatz is used to derive
system matrices for a finite data set. Other work shows that autoregressive moving
average systems can be asymptotically efficient estimated by CCA and emphasizes
that this approach provides accessible information on the appropriateness of the chosen
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model complexity (Bauer, 2005). Furthermore, the canonical correlation coefficients
estimated by CCA of past-future data were shown to be equal to the cosines of the
principal angles between the linear subspaces spanned by input past and output future
(Cock and Moor, 2002).

The difference of our work to all these results is that the information bottleneck al-
lows a continous rather than a discrete tradeoff between two objectives and provides the
computation of the optimal information curve. More fundamentally, the past-future in-
formation bottleneck can be seen as mapping a relationship between information theory
and linear dynamical system theory.

Interestingly, a canonical correlation based approach can also be used for blind
source seperation of mixed signals (Borga and Knutsson, 2001). This should come
as no surprise with our results on the conceptual similarity between SFA and predic-
tive coding (chapter 7) and another work, relating SFA and blind source separation
(Sprekeler, personal communication).

SUMMARY AND OUTLOOK:

Neural systems need to encode temporally correlated data streams. As such data streams
can be generally described as dynamical systems, the task can equivalently be phrased
as a problem of identifying the underlying system. Furthermore, encoding must be suf-
ficiently accurate for, e.g., appropriate behavioral output, but should avoid overaccurate
representations. In the language of dynamical systems, this problem is called model
reduction. Here, we find the optimal information-theoretic tradeoff curve between ac-
curate encoding of dynamical systems and permitted model reduction for linear dy-
namical systems. From this perspective, the state space can be seen as the information
bottleneck between past and future of a data stream. System identification and model
reduction by PFIB can be regarded as lossy source channel coding in the temporal do-
main and is shown to be similar to concurrent subspace-based system identification and
balanced model truncation. The difference is that PFIB allows a continous tradeoff be-
tween model quality and complexity. We derive the relation to canonical correlation
analysis of time series and calculate the information curve. We use the spring-mass
system as an example to show that numerical simulations and theoretical predictions
coincide. Fundamentally, this works shows that dynamical systems can be approached
by information-theoretic methods.

The past-future information can and should be extended into several directions.

* Here, we compute the reduced system matrices via the PFIB-modified Hankel
matrix. It would be interesting to obtain the reduced matrices directly from the
orginal system. Plausibly, this can be achieved in a similar manner to balanced
model truncation (Zhou et al., 1996).
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* Similar to the Gaussian information bottleneck and the past-future information
bottleneck, channel capacity increases continously with weakening power con-
straints in the well-known case of water-filling for Gaussian channels (Cover and
Thomas, 1991; Yu et al., 2004). It is clear that the two approaches are closely
related. Hence, working out the relation between water-filling in Gaussian chan-
nels and PFIB would connect the dynamical systems literature concerned with
model reduction to many results from information theory.

* So far, we have applied the PFIB approach on deterministic systems. However,
PFIB can also be adopted to stochastic systems where the system is (partially)
driven by unknown noise. This would amount to additional estimation of the
Kalman gain but should not interfere with general results.

* The assumption of this approach is stationarity of input and output signals. How-
ever, organism have to deal with changing, i.e., non-stationary environments.
Hence, this formalism should be extended to adapt for changing statistics in an
appropriate manner, as is done in neural systems (Hosoya et al., 2005).

» Speech processing is a suitable application for PFIB. Particularly, a comparison
with biologically motivated algorithms relying on a version of predictive coding
(Ellis, 1996) seems appropriate.

* Local predictive coding is identical to linear SFA. How does (linear) SFA per-
form on non-Markovian processes in comparison to PFIB? Can the non-linear
extension of SFA balance the missing information from previous time-steps?

* Neural ensembles encode information about the past and the future simultane-
ously in the hippocampus (Ferbinteanu and Shapiro, 2003). In humans, imagin-
ing the future depends on much of the same neural machinery that is needed to
remembering the past (Schacter et al., 2007). A future challenge is the detailed
understanding of these results in light of the past-information bottleneck.

* Finally, biological systems, especially neural networks, possess feedback as an
essential component of their organization. An extension of PFIB to control de-
sign would be interesting and techniques from Katayama (2005) could be used.
For further discussion of this aspect, the reader is refered to Chapter 10.3.

tex
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Outlook: Predictive coding in the
grasshopper auditory system?

In the first part of this thesis, we have seen that the grasshopper Chorthippus biguttulus
identifies particular temporal features of communication signals by a burst code in one
ascending neuron. Also, integration of their spike trains allows time-scale invariant
song identification. In the second part of this thesis, we have used an information-
theoretic ansatz to find a tradeoff between accurate predictive coding and data com-
pression in dynamical system. Here, we want to relate the two parts by asking: Is
the grasshopper auditory system an information bottleneck for predictive information?
First, we will extract the predictive components of grasshopper signals. Then we will
discuss these results comprehensively in the context of the whole thesis and give an
outlook for further research. Note that limitations and extensions of the different parts
of this thesis are discussed at the end of chapters 5 and 9, respectively.

10.1 Predictive filters of grasshopper songs

Plausibly, the grasshopper relies on its auditory system for a variety of tasks. However,
it is clear that at least communication signals have behavioral significance. Our past-
future bottleneck approach (PFIB) suggests to ask the following question: Does the
grasshopper auditory system extract those parts of communication signals that contain
predictive information, i.e., information on the future components of the same signal?
We will apply PFIB on grasshopper communication signals and discuss the results.

Description of the algorithm. All 8 communication signals were rectified and smoothed
(2 ms) to give amplitude-modulation signals. Only the steady-state part of songs was
chosen, as in chapter 2. Also, all songs were normalized with respect to mean and
standard deviation. A sliding window with 200 sampling points was driven over the
signals, extracting a vector with 200 entries. Each vector was defined as X, ; the as-
sociated vector with the subsequent 200 entries was defined as Xy,,. Theorem 9.1.1
was applied on X, and Xy, i.€., we calculated the left eigenvectors and eigenvalues

94
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of ZXWS, X MZ)}[}M. The eigenvectors, i.e., the row vectors of matrix A in 9.2 were in-
terpreted as filters extracting those signal components that contain information about
the future signal. For different filter time scales different sampling rates were chosen:
20 kHz, 6.6 kHz, 3.3 kHz, 1 kHz, 0.5 kHz and 0.2 kHz corresponding to filters with
the following durations: 10 ms, 30 ms, 60 ms, 100 ms, 200 ms and 500 ms. The first 6
filters are displayed for the 10 ms, the 100 ms and the 200 ms time scale in Fig. 10.1.
Individual filters were applied on incoming signals to obtain associated state space tra-
jectories. The first 6 trajectories are displayed for filters with time scale 100 ms (Fig.
10.2).

The filterbank. First, we focus on the filters with short time scale, i.e., 10 ms. Most
predictive information is on very short time scales. The first filter with time scale 10 ms
already contains most information on the future, relying basically on the direction of
amplitude change within the last 0.1 ms (Fig. 10.1a)!. However, from the inspection
of the subsequent filters, we can assert that amplitude modulations of 2 ms are also
relevant (Fig. 10.1a). In contrast to a Fourier decomposition, the filters have no sinus-
shape. The second filter emphasizes periodically appearing mini amplitude plateaus
(1.6 ms) interrupted with mini gaps (0.4 ms). The third filter extracts periodic mini
onsets preceded by equally short excursion below average amplitude. As a second ex-
ample, we investigate the filters with time scales of 100 ms (Fig. 10.1b). The first two
filters extract fluctuations on the 2 ms time scale, similarly to the set of filters above.
However, subsequently, predictive components on longer time scales appear. The third,
forth and sixth filter show unregular amplitude modulation at a timescale of around
25 ms. Third, we also show the 6 first filters for the 200 ms time scale. Also here, the
first two filters extract very short time scale flucutations. The third filter has a rather
slow modulation. The forth, fifth and sixth filter extract signals with a periodicity of
around 50 ms.

State space trajectories. Filters extract predictive information from temporal patterns
and project this information into state space trajectories. The projection of one specific
communication signal by individual filters is displayed in Fig. (10.2). The first filter
alone is sufficient to reprocude the complete song dynamics. Basically, this filter repro-
duces the amplitude 0.05 ms ago. Hence, this result should not be very surprising. The
subsequent filters at 10 ms seem to be much less predictive, as shown in Fig. (10.2B).
However, this is due to the fact that everything is already predicted by the first filter.
The first filter at 100 ms with 500 Hz components, i.e. amplitude modulations
at 2 ms, can also correctly predict the time course of the communication signal (Fig.
10.2C). The state space trajectory of the third filter is interesting as its dynamics are al-
ready much slower (Fig. 10.2D). Furthermore, the amplitude modulation can be seen as
a phase-shifted abstraction of the detailed syllable-pause alternation, i.e., phase infor-
mation is not necessarily preserved. The sixth filter of Fig. (10.1b) is truely predictive,
as it produces a trajectory preceding the communication signal structure with several

I'The preceding fluctuations probably occur due to forced orthogonalization with the other filters.
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Figure 10.1: Predictive filters of grasshopper communciation signals for different
time scales. For each time scale, the 6 most predictive filters are displayed. According
to time scale, filters in a) b) and c) are 10 ms, 100 ms and 200 ms long. The capital
letters indicate the filters used for Fig. (10.2).

milliseconds (Fig.10.2E). The very slow third filter for the 200 ms filter set (Fig. 10.1c)
can be interpreted as a further abstraction, only signalling syllable pause alternations
with no respect of fine-detailed temporal structures (Fig. 10.2F). On the other hand,
also this time scale has filters with faster components associated with more detailed
state space trajectories (Fig. 10.2G).

Discussion. What can we learn from these observations? There seem to be different
time scales within the communication signals that carry predictive information. Of
course, the immediate past is highly predictive about the signal (Fig. 10.2A). Beside
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Figure 10.2: State-space trajectories for communication signals. Capital letters cor-
respond to indicated filters in Figure 10.1. The input signal is in gray, state space
trajectories in black. See text for detailed discussion.

this not surprising result, periodic components at 2 ms (Fig. 10.2B+C), at 25 ms (Fig.
10.2D+E), at 50 ms (Fig. 10.2G) and longer time scales (Fig. 10.2F) carry information
about the future signal.

It would be interesting to compare individual filters with cell properties in the
grasshopper auditory system. Here, we just want to note some similarities. Short time
fluctuations of around 2 ms are quite well represented at the level of receptor neurons,
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Figure 10.3: Data processing in-
X Y Z equality along the auditory path-
way. According to the data pro-
cessing inequality, the informa-
. . tion Z contains about X cannot be

[(X’Y) = I(X’Z) larger than I(Y,X) if Z is a func-

R(D) tion of Y only. Hence, in hierarchi-
receptors cally organized nervous systems
higher processing stages contain
less information about the input
brain than lower ones: the feasability of
: D reconstruction worsens. The rate-

DmaX distortion curve shows the mini-
mal distortion that can be achieved

when information rate is reduced.

ganglion

where the maximal firing rate is ca. 500 Hz. Also, stimulus reconstruction based on
spike trains of receptor neurons is quite accurate (Machens et al., 2001). Ascending
neurons, on the other hand, seem to be less well suited for accurate stimulus recon-
struction as 1) maximal spike rate is cut in half from receptor to ascending neurons and
ii) interspike-interval variability increases from receptor to ascending neurons (Vogel
et al., 2005). In detail, the AN6 neuron is the only ascending neuron responding ton-
ically to amplitude modulations but encoding song patterns much less precisely than
receptor neurons (Stumpner et al., 1991). However, modulations on longer time-scales
can be represented. As we have seen in chapters 2—5, the AN12 can encode the pause
duration. Also, the ANG fires tonically in response to syllables, thereby encoding sylla-
ble duration (Stumpner et al., 1991). These coding properties are reminiscent of filters
with longer time-scales such in Fig. (10.2D-F).

10.2 The auditory system as an information bottleneck

In one regard, the past-future information bottleneck approach is clearly limited. The
predictive filters were extracted while ignoring the architecture of the sensory system.
In fact, the latter imposes interesting boundary conditions.

A main attribute of the sensory system is its hierarchical organization (Fig. 2.1). By
the data processing inequality, interneurons cannot carry more information about the
signal than the joint activity of receptor neurons do, and similarly ascending neurons
and subsequent read-out cells carry less and less information (Fig. 10.3). What kind of
information processing strategy is appropriate for such a feed-forward network?

First, one may argue that each processing stage should try to keep effectively all
information of the preceding stage about the signal, approximating a data processing
equality. However, this is not necessarily reasonable or possible. For example, a con-
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verging architecture might limit the upstream information rate. Second however, the
reduction in information rate may still follow an optimality principle, such as the rate-
distortion curve (see chapter 6). Upstream neurons would keep that information, that
allows best possible reconstruction (smallest distortion) or decoding given the limited
information rate (Fig. 10.3). One very common distortion measure is the mean square
distance between reconstruction and signal. In fact, the grasshopper receptor neurons
can accurately reproduce the stimulus time course with low mean square error and high
information rate: 500 bits/s (Machens et al., 2001). We can also guess that at least
single ascending neurons, having a lower firing rate and probably lower information
rate < 100 bits/s, can reconstruct stimulus time course with lower quality. In fact, the
AN12 may signal the timing of syllable onset and pause duration, hence, forwarding
the slow time-scale modulations of the signal. However, the mean square error may
actually prove to be a meaningless distortion error. The AN12 neuron may reproduce
some aspects of the temporal patterns but it may also only poorly encode absolute signal
amplitude, potentially producing a large mean square distance.

There is another but related characteristic of this hierarchical auditory sytem. Our
observations indicate that higher processing stages integrate information over subse-
quently longer time scales. Receptor neurons fire in response to amplitude modulations
of 2 ms, ascending neurons prefer time scales of 10-70 ms. A plausible read-out neuron
integrates over 0.5-1 s. Hence, higher level neurons are more sensitive to modulations
on successively longer time scales. This observation cannot be deduced from the pre-
dictive filters in the last section. There, predictive filters appear simultaneously.

Indeed, integration of long time-scales might be a common property of auditory
system. As discussed in Chapter 3, also neurons in auditory cortex of mammals in-
tegrate over a variety of timescales (10 ms, 100 ms, 1 s) (Nelken et al., 2003). The
example of the AN12 neuron (Chapter 2), results of our modeling studies (Chapters 3
+ 5) and this chapter’s considerations of the predictive coding hypothesis indicate that
invariant auditory object recognition of temporal patterns may be achieved by temporal
integration over successively longer time-scales.

What then is the function of the auditory system of the grasshopper? Filter proper-
ties of different levels are reminiscent of theoretical predictive filter. Hence, low level
information processing is not in contradiction to the hypothesis that the sensory system
extracts predictive information. The firing rate of receptor neurons can be used for ac-
curate stimulus reconstruction but it is not clear that higher stages can perform similar
tasks. That is, a rate-distortion theory with a simple distortion measure can probably
not be used to model the auditory system. In contrast, higher processing stages seem to
extract invariant temporal features on longer time scales. Hence, we can postulate the
following hypothesis:

The auditory system extracts predictive information such that neural states
of higher hierarchical levels contain information about longer time scales
than the neural states of lower levels.
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Note that this hypothesis already implies that total information rate decreases along
the auditory pathway as short time predictions are more informative than long time
predictions (Fig. 10.14+10.2+10.3). On the other hand, it is information on longer time
scales (~ reaction time) that is behaviorally relevant — and hence sufficient — for an
animal.

From this hypothesis, we can derive questions for experimental and computational
studies:

* Are auditory neurons tuned to extract predictive statistics of the signal? How do
response properties change if the content of predictive information in signals is
altered? How does the code change with the level of hierarchy and integration
time?

* Can the auditory system of insects, songbirds or mammals be modeled by a hi-
erarchy of predictive filters? Can existing models (Ellis, 1996) be extended into
hierarchical (non-linear) models similar to (Karklin and Lewicki, 2005; Schwartz
et al., 2006) but with a PFIB objective function?

Such models should be seen in context of established frameworks of object recog-
nition in the visual system. For example, invariant visual object recognition algorithms
suggest that high-level invariances are detected by successive spatial integration over
low-level features (Riesenhuber and Poggio, 1999; Rolls and Stringer, 2006). The close
relationship of predictive coding and slow feature analysis, an established framework
for invariance detection (Wiskott, 2003), as shown in chapter 7, indicates that the past-
future information bottleneck can be the basis of a hierarchical network detecting in-
variances in the temporal domain.

10.3 Relevant signals and self-referential systems

We can proceed one step further. From behavioral experiments we can deduce that
the presence of a mating song corresponds to one top-level invariance: Grasshoppers
respond stereotypically to communication signals of sufficient quality. Of course, such
a communication signal itself is predictive on a higher time scale, i.e., indicating re-
production in the near future. From this point of view it becomes even more clear
that sensory systems extract not all predictive structures but focus on those that have
predictive and relevant value for their own future.

However, the notion of behavioral relevancy imposes conceptual difficulties. How
should one define relevant features? The grasshopper communication signals are rel-
evant because other grasshoppers respond to them. And other grasshoppers respond
to them because the communication signals are behaviorally relevant. Hence, we en-
couter a recursive definition of relevancy. From the empirical point of view this poses
no further problems as one is — as an empirical scientist — first of all interested in an
accurate description. In contrast, for a theoretician it is less clear how to formalize the
underlying logic of such autopoietic processes.
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The foundations of a theory of autopoiesis in biological systems have been laid out
vividly by Varela, 1976. In his terms, an autopoietic system is organized as a network
of processes of production of components that — through their interactions — conti-
nously regenerate and realize the network that produces them. From this perspective,
organisms are autopoietic (literally self-produced) systems with constantly changing
structure (e.g., protein concentrations) by maintaining its organization. The nervous
system itself can be regarded as such an autopoietic system. The nervous system is a
closed network of interacting neurons such that the change of activity in some neurons
lead to change in activity in other neurons, either directly through synaptic action or in-
directly through genetic coupling or physical mediators in the environment. From this
perspective, effector neurons change the environment such that the activity level of sen-
sory neurons is modified. The fundamental invariance of the nervous system is then the
maintenance of the relations that define its participation in the higher-order autopoietic
system, the organism. Also sensory perception can be interpreted as the construction
of invariances through sensory-motor coupling. For example, in locomotion a rhyth-
mic pattern generator generates motor output. Proprioceptors sense the output and give
feedback to the pattern generator such that the walking rhythm of the animal is invari-
ant to minor environmental changes. How does such a perspective interfer with the
approach of this thesis? Varela claims that — switching from an information-theoretic
or engineering to an autonomy perspective — every bit of information is relative to main-
tenance of a system’s identity, and can only be described in reference to it, for there is
no designer. Varela framed the information-theoric input-output and the autonomous
point of view as antithetic, or as complementary. However, the notion of relevant or
sufficient information, as used in (Tishby et al., 1999) and within this thesis, instead
suggests that the two perspectives can be combined. The relevancy and sufficiency of
information is then evaluated with respect to the maintenance of the organism.

A practical way to deal with autopoietic systems can be found in evolutionary theo-
ries formulated with a variety of agents and reinforcement learning algorithms on differ-
ent interacting time scales. Hence it is obvious, that these dynamics are fundamentally
shaped by feedback processes on all levels. The past-future information bottleneck is
reasonably motivated but — as a first approach — restricts itself on processes without
feedback. Fortunately, dynamical system theory can naturally be extended to control
theory that includes feedback loops into the framework, e.g. (Stengel, 1994). The fo-
cus, then, should also shift from input-output relations to construction of invariances
of internal states. A suitable basis for this is specified by behavioral model identifica-
tion where all dynamics are put into an autonomous state-space model — instead of an
input-output model (Johansson and Robertsson, 2004).

10.4 Closing words

What are principles of sensory processing of temporal signals? Both efficiency and
relevancy arguments suggest predictive coding as a guiding principle. This claim is
substantiated by our result that local predictive coding and an established computation
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model of sensory processing — slow feature analysis — are equivalent under certain con-
ditions. We demonstrate that the information-theoretic perspective can be combined
with the engineering dynamical system formalism. The problem of finding an internal
state that maximizes predictive coding while keeping overall information rate low is
mapped onto a joint system identification / model reduction problem, enabling suffi-
cient coding. Changing to the neural perspective, this thesis also demonstrates that the
auditory system can transform temporal signal features such as pause durations into
a graded intraburst spike count code. Rather than forwarding this information, sub-
sequent brain neurons could directly read-out communication signals in a time-scale
invariant manner by integration. This is concordant to the view that the auditory sys-
tem extracts predictive filters of relevant stimulus statistics at successively longer time-
scales.

tex
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Analysis of the bursting interneuron:
Methods

Stimulus design. Two different stimulus schemes were used: Natural mating songs
(recordings from Sandra Wohlgemuth) and artificial block stimuli (recordings from
Andreas Stumpner). Under the natural song scheme, acoustic search stimuli were pre-
sented to identify auditory neurons. Then a brief intensity response scheme was run to
determine the neuron’s response characteristics (100 ms pulses filled with white noise,
bandwidth 0.5-30 kHz, 30-70 dB in 10-dB steps, each intensity repeated four times).
The acoustic stimuli used in the natural song stimulus set were eight different songs
(Fig 2.2a) recorded from individual males all of which were able to evoke a positive
female response. Each song was repeated eight times while intracellularly recording
the response of the neuron.

The acoustic stimuli used in the artificial song scheme consisted of six syllables of
rectangularly modulated white noise (2.5 — 40 kHz, Fig 2.2b). Longer versions of the
same models were used in previous behavioural experiments (e.g. von Helversen and
von Helversen (1994)). The six syllables had constant durations (40, 85 or 110 ms, the
pauses in between were 3.2, 8,8, 16.3, 24.0, 33.0 and 42.5 ms long. Each stimulus set
was repeated 8 times.

Animals, electrophysiology and acoustic stimulation. Experiments under the natural
song stimulus paradigm were performed on 6 animals, 3 Chorthippus biguttulus, and 3
adult locusts (Locusta migratoria). In both auditory systems the same kind of auditory
neurons, specifically ANs can be anatomically identified and electrophysiologically
characterized (Romer and Marquart, 1984; Stumpner and Ronacher, 1991); further-
more, interspecific spike train distance between AN12 cells is similar to intraspecific
spike train distance (Wohlgemuth et al., 2007). During the experiments with natural
songs the preparations were kept at a constant temperature of 30 +2° C. Details of the
experimental procedure are given in Wohlgemuth et al., (2007) .

Experiments under the artificial block stimuli paradigm were performed on 9 adults
of Chorthippus biguttulus. The experiments were conducted at a constant temperature
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of 25 42° C. The electrophysiological methods and stimulution apparatus were similar
to the natural song stimulus set and are described in detail in (Stumpner and Ronacher,
1991). The spike count was much lower than in the natural stimulus paradigm, proba-
bly due to the lower recording temperature (25° C vs 30° C).

Data analysis. From the digitized recording signal, spike times were determined by
means of a voltage threshold criterion. The first part of each song was dismissed to
include only the steady-state part of the songs into the analysis. For spike train analysis,
any cluster of spikes was defined as a burst. Formally, we included single spikes and
treated them as bursts. A spike belongs to a burst only if the spike follows the preceding
spike after not more than 3 +n ms, n being the spike rank within the burst. This measure
takes into account that interspike intervals tend to increase with ongoing burst duration.
Altogether, we dismissed information in the temporal fine structure within bursts and
instead concentrated on spike count information only.

In natural songs, each syllable onset is preceded by a period of relative quietness.
In fact, the amplitude-modulation signal during pauses is not vanishing as under the
artificial song scheme (Fig. 2.3). This difference is not negligible (von Helversen et al.,
2004) but does not effect our results in principle. Hence, for simplicity, the period of
relative quietness in natural songs will also be called “pause”. The pause in natural
songs is defined as the time between passing a certain amplitude threshold from above
and passing this threshold again from below (Fig. 2.3c). For each cell, the songs were
normalized with respect to mean and standard deviation. The threshold was varied
such that the correlation between pause and spike count within the subsequent burst
was maximized. The correlation is robust with respect to different amplitude levels
(Fig. 2.6¢). The minimal amplitude is taken as the minimal value in the preceding pe-
riod of quietness (Fig 2.3c). Relative onset amplitude is defined as the maximal onset
amplitude minus the minimal amplitude in the preceding quietness period. The total
period duration is defined as the time difference between the first spikes of two subse-
quent bursts (Fig 2.3d). The slope is defined as the relative onset amplitude divided by
the time interval between maximal and minimal amplitude values (Fig 2.3c). To obtain
the correlation between spike count and signal features, the R-square value (explained
variance, Pearson correlation) was calculated. It was checked for multicollinearity by
computing the semi-partial r-value for each independent variable.

Song classification. The classification of AN12 responses is based on intraburst spike
count only, i.e., no temporal information is used. For the classification, we used only
those bursts which had, on average over 8 trials, more than 1 spike at any specific time,
thus including only reliable events. The order of bursts within a song was indexed such
that the k-th burst has burst index k. The average number of intraburst spike count is
assigned to the corresponding burst index. The spike count difference between each
intraburst spike count to all other intraburst spike counts at the same burst index is
measured. This intraburst spike count is then assigned to that song whose intraburst
spike counts have in average the smallest difference. This classification scheme was
first applied to individual bursts. Second, cumulutive classification based on n-bursts
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was done by adding the spike count differences of n subsequent bursts before classifi-
cation.

Estimation of Mutual Information. We used the adaptive direct method developed by
Nelken et al. (2005) to calculate the mutual information (MI) between pause duration
and spike count within bursts. Here, one starts with the best resolution available and
constructs the matrix of joint probabilities between spike counts and pause durations.
The naive MI and the bias corrected MI are computed using the method from Panzeri
and Treves (Panzeri and Treves, 1996) for bias correction. Step by step, one reduces
the matrix by merging columns which represent the finely binned pause durations. The
matrix was reduced by merging the column with the smallest marginal probability with
that neighbouring column that has the smaller marginal probability. The result is a set
of decreasing MI and corresponding bias values. The true M1 is estimated as the largest
difference between those two values.

Mutual information between cumulated spike count and song identity. The prob-
ability of correct classification was used to calculate the mutual information between
cumulated burst events and song identity. We assumed that wrong classifications were
equally distributed across the other 7 songs, thus giving a strict lower bound on the
mutual information. By this, only the relevant information of correct classification was
taken into account.
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Derivation of the generalized
eigenvalue equation for SFA

Let W; denote the row vector that is formed by the j-th row of the weight matrix A. The
output signal Y; is then given by ¥; = W;X. Accordingly, the slowness objective (7.1)
is given by

AlY)) = (¥}) (B.1)
(W;X)(W;X)),
Wi xx") Wl =wiggw!

A similar calculation yields that the variance of the output signal Y; is given by

7.3

var(Y;) = (Y7) = Wy(XX")W] =wzxw] 3y, (B.2)
The task is to minimize (B.1) under the constraint (B.2) and the decorrelation constraint,
which we will neglect for now as it will turn out to be fulfilled automatically. The
method of Lagrange multipliers states the necessary condition that

Y= A(Yj) - 7\'<Yj2>l

is stationary for some value of the Lagrange multiplier A, i.e., that the gradient of ¥
with respect to the weight vector W; vanishes. Using (B.1) and (B.2), this gradient can
be calculated analytically, yielding the following necessary condition for the weight
vector W;

W,Zy —AW;Xx =0. (B.3)

Note that condition (B.3) has the structure of a generalized eigenvalue problem, where
the Lagrange multiplier A plays the role of the eigenvalue. Multiplication with WjT
from the right and using the unit variance constraint (B.2) yields that the A-value of a
solution of (B.3) is given by its eigenvalue A:

WiZgW/ —AWExW =0 = A(Y))=A.
N—— N——

ir2),=1
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From this it is immediately clear that the slowest possible output signal is provided by
the linear function associated with the eigenvector W; with the smallest eigenvalue A;.
It can be shown that eigenvectors W;, W; with different eigenvalues A;, A ; are orthogo-
nal in the sense that (¥;Y;); = W;XxW; = 0, so they yield decorrelated output signals.
For eigenvectors with identical eigenvalues, any linear combination of them is still an
eigenvector. Hence, it is always possible to choose a basis of the subspace that still
consists of eigenvectors and yields decorrelated output signals (e.g. by Gram-Schmidt
orthogonalization).

Combining these properties of the eigenvectors, it is clear that the optimization
problem of linear SFA can be solved by choosing the functions associated with the J
eigenvectors W; with the smallest eigenvalues, ordered by their eigenvalue. Reinserting
the eigenvectors W; into the matrix A and the eigenvalues in a diagonal matrix A, the
eigenvalue problem (B.3) takes the form of equation (7.5)

ALy = AASy .
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Derivation of the Optimal Weight
Matrix for Local Predictive Coding

We first rewrite the mutual information quantities in the objective function for local
predictive coding in terms of differential entropies:

Lipe = 1Y, X)) —1(Y:,Xi41)
h(Y;) — h(Y;|X;) — Bh(Y;) + Bh(Y:[Xi41) .- (C.1)
Here, the differential entropy of a stochastic variable Z is given by h(Z) = — [, f(z)log f(z)dz

with f(z) denoting the probability density of Z. In particular, for Gaussian variables,
the differential entropy becomes

1
hZ) = E1og(2ne)d 12zl

where |Xz| denotes the determinant of ¥z and X7 := (ZZT), is the covariance matrix of
Z (Cover and Thomas, 1991). Hence, we have to find the covariance matrices of the
quantities in (C.1). As ¥; = AX; +&, we have Yy = AZXtAT + Zg and Xy X, = Zg. The
last covariance matrix is obtained as follows:

Tyix,, =Xy, — zy,;XMZ;}HZXM;g
— AZx A" + % —AZxx, Zx | Zx,xAT
=A%y x, AT+ ¢,
where we used Schur’s formula, i.e. ZX|Y =Xx — Zx;yz);lZy;X, in the first and last

step (Magnus and Neudecker, 1988). Neglecting irrelevant constants and using that the
noise is isotropic, the objective function (C.1) becomes

L=(1-B)log|AZy,A" +1|+ Blog|AZy |y, , A" +]1]. (C.2)
The derivative of the objective function with respect to the weight matrix is given by
dL _ .
1= B)(ASx AT +1)"12A%y, + B(AZy,x,, AT +1) 1245y, -
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Equating this to zero and rearranging, we obtain a necessary condition for the
weight matrix A:
p-1 1 1
5 (Ayx,, AT +1)(AZx AT + 1) TA =A%y iy, i (C.3)

=M
We will prove that this equation can be solved by filling the rows of A with ade-
quately scaled versions of the solutions W; of the following generalized (left) eigen-
value problem:

WXy x,., = MWL, . (C.4)

We will first make some considerations on the solutions of the eigenvalue equation
(C.4) and then insert them into equation (C.3) to show that this yields M diagonal. It
then becomes clear that there are scaling factors for the eigenvectors such that equation
(C.3) is solved.

(1) W;jis a left eigenvector of Xy |y, +1Z)}tlz

WjZXt‘XtJrl — xWJZXt (CS)
& Wilyx. Zx' = AW

(2) M is diagonal: The crucial observation for this statement is, that the eigenvectors
W; need not to be orthogonal., becagse Ly, Xz+12)21 %s ngt necessarily sym@etric.
The structure of the generalized eigenvalue equation is such that solutions of
equation (C.4) with different eigenvalues A are orthogonal with respect to the
positive definite bilinear form induced by Xy, :

(‘/ViaWj) = "ViZX[WJT = rl-8,-j with ;> 0.

In the case where there are several eigenvectors with the same eigenvalue, it is
always possible to choose eigenvectors W; that are orthogonal in the sense above.
Assume that the rows of A are filled with the eigenvectors W;, scaled by a factor
o;. With this choice, AXx AT +1 is diagonal with diagonal elements r,-oc? + 1.
Right multiplication of (C.4) with WJ-T yields that AXy, x, lAT +1 is also diagonal
with diagonal elements 7;A jOC? + 1. Thus M is diagonal with diagonal elements

M-- _ rjOC?)\.j-Fl
JJ rj(x?+1 ’

(3) Using the above results, (C.4) becomes

A3+ 1
[BB (szlj"j—i—l —7\.1'] OLJ'W]' =0. (C.6)
it

This equation can only solved if either oi; = 0 or

B—1Ajogr+1
B OC?I’]'-FI

j.
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APPENDIX C. OPTIMAL WEIGHT MATRIX FOR LPC

Rearranging for (x? yields the normalization stated in proposition 1:

2 B=2j)—1
JTi

Of course this equation can only be solved if the right hand side is positive.

Because r; and A are positive, this reduces to a relation between the -value and

the eigenvalues:

1
P21

For the eigenvalues that do not fulfill this condition for a given [, equation (C.6)
can only be solved by a; = 0. This shows that the critical B-values as stated in
proposition 1 are those, where a new eigenvector becomes available. Moreover,
we have now demonstrated that A(P) as stated in proposition 1 is a solution of
equation (C.3). Note that in line with the fact that the objective function of opti-
mization problem 1 is invariant with respect to orthogonal transformations of the
output signals, any matrix A = UA with U~! = U7 is also a solution of (C.3).
We refer the reader to (Chechik et al., 2005) for the proof that A(B) is not only a
stationary point of (C.3) but also minimizes the objective function (C.2).
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Deutsche Zusammenfassung

Was sind die Organisationsprinzipien neuronaler sensorischer Systeme, um Signale mit
zeitlicher Struktur zu verarbeiten? Um dieser Frage nachzugehen, wéhlen wir zwei
komplementire Ansdtze und untersuchen A) ein konkretes Modellsystem, die Ver-
arbeitung akustischer Information in Grashiipfern und B) einen mathematischen, ax-
iomatischen Ansatz, demzufolge gilt, dass explizit Informationen iiber die Zukunft des
Signals, also der natiirlichen Umwelt, herausgefiltert werden. Beide Ansitze haben
gemeinsam, dass sie sich auf die Extraktion von relevanten Signalen fokussieren. Bei
dem Grasshiipfer Chorthippus biguttulus ist bekannt, dass Kommunikationssignale
zeitskaleninvariant erkannt werden. Deshalb fragen wir nach dem zugrundeliegen-
den Mechanismus dieser Invarianzerkennung zeitlicher Muster. Die Kodierung vorher-
sagender Information ermoglicht neben der Implementierung von effizienter, also
ressourcenschonender Kodierung auch die Fokussierung auf verhaltensrelevante Be-
standteile des zeitlichen Signals: diejenige, auf die der Organismus durch eigenes
zukiinftiges Verhalten noch reagieren kann.

Zunichst untersuchen wir im 2. Kapitel, das Antwortverhalten einer bestimmten
Nervenzelle im auditorischen System des Grasshiipfers auf arteigene Kommunikations-
signale. Diese Nervenzelle (genannt AN12) ist Bestandteil einer hoheren Verarbeitungs-
stufe und leitet Information von der Hauptverarbeitungsstation auditorischer Signale,
dem Metathorikalganglion, weiter zum Oberschlundganglion. Die Kommunikations-
signale sind periodisch und bestehen abwechselnd aus Abschnitten hoher Amplitude,
den sogenannten Silben, und Abschnitten niedriger Amplitude, den Pausen. Das AN12
antwortet am Beginn einer Silbe mit einer Haufung von Aktionspotentialen (Burst).
Allein anhand der spezifischen Charakterisierung durch die Anzahl der Aktionspoten-
tiale in Bursts konnen Kommunikationssignale diskriminiert werden; auf zeitliche In-
formation muss dafiir nicht zuriickgegriffen werden. Hauptergebnis ist, dass die Anzahl
der Aktionspotentiale pro Burst hoch signifikant mit der vorhergehenden Pausenldnge
korreliert und sogar proportional zu dieser ist. Andere Eigenschaften des Kommunika-
tionssignals sind dagegen nur schwach mit der Anzahl der Aktionspotentiale pro Burst
korreliert. Die Rolle von Bursts im sensorischen System wird abschlie3end ausfiihrlich
diskutiert.

Kann diese Burstkodierung dazu beitragen, die Kommunikationssignale zeitskalen-
invariant zu erkennen? Im 3. Kapitel schlagen wir dazu folgenden Mechanismus vor.
Wenn das Signal global um einen Faktor X gedehnt wird, so nimmt jede Pausenléinge,
damit aber auch die Anzahl der Aktionspotentiale pro Burst um (ungefédhr) den gleichen
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Faktor X zu. Gleichzeitig sinkt die Anzahl der Silbenanfinge um den Faktor X. Diese
beiden Effekte kompensieren aneinander, so dass eine Integration der Anzahl der Ak-
tionspotentiale eine Invariante gegeniiber zeitlicher Signaldehnung ist. Die neuronale
Antwort des AN12 auf verschieden Gesidnge ermdglicht tatsichlich eine zeitskalenin-
variante Integration.

In Kapitel 3 und 4 fragen wir nach den neuronalen Schaltkreisen, die die AN12-
Antwort und die Gesangserkennung ermoglichen. Zunichst entwickeln den soge-
nannten FexSin-Schaltkreis, in dem das AN12 mit einer instantanen exzitatorischen
Kompenente und einer langsamen inhibitorischen Komponente getrieben wird. Damit
kann explizit die Abhédngigkeit von der Pausenlinge modelliert werden. Diese Art
von Schaltkreis kann auch dazu genutzt, das Antwortverhalten von Nervenzellen im
auditorischen Kortex von Gesangsvogeln zu modellieren. Dieses einfache Modell ist
ausreichend, um die Erkennung von Gesédngen in Gegenwart von verschiedenen Hin-
tergrundgerduschen zu erkléren.

Die Integration der Antwort des AN12 reicht nicht alleine aus, um die Verhal-
tensantwort des Grasshiipfers darzustellen. Geméf unserem Modell miissen vielmehr
parallel auch die Silbenldnge und die Silbenfrequenz innerhalb des gleichen Zeitrah-
mens integriert werden. Unter diesen Vorraussetzungen reicht ein duflerst einfacher
Auslesemechanismus, eine dreifache parallele Schwellenwertiiberschreitung und ein
logischer UND-Mechanismus aus, um schlieBlich den vollstindigen Weg von Inputsig-
nal bis zur Verhaltensantwort des Grasshiipfers zu erkléren.

Im zweiten Teil dieser Arbeit erkunden wir mathematisch den Ansatz der vorher-
sagenden Kodierung. Im 6. Kapitel beschiftigen wir uns mit den Grundlagen der
Informationstheorie. Die grundlegenden Theoreme von Shannon zeigen, wie opti-
male Datenkompression und auch Informationsweiterleitung unter Rauschbedingungen
durchgefiihrt werden kann. Biologische Systeme miissen verschiedene Anforderun-
gen gleichzeitig erfiillen. Wenn die Informationsrate minimiert und gleichzeitig die
Genauigkeit der Reprisentation optimiert werden soll, findet die sogenannte Rate-
distortion Theorie Anwendung. Von unserer Grasshiipferfallstudie haben wir aber
schon gelernt, dass nicht jede Komponente des Signals genauso relevant fiir den Organ-
ismus ist. Die Informationsflaschenhalsmethode ermoglicht, aufbauend auf der Rate-
distortion Theorie, die spezifische Extraktion von definierten relevanten Signalen.

Im folgenden schlagen wir vor, dass nur die Informationen, die vorhersagenden
Charakter haben, fiir einen Organismus relevant sein kann, da dieser immer in der
Zukunft des Signals handelt. Im 7. Kapitel behandeln wir die optimale Extrak-
tion von vorhersagender Information eines multivariaten Prozesses liber den nichsten
Zeitschritt. Der Ansatz ergibt eine verallgemeinerte Eigenwertgleichung, deren Eigen-
vektoren identisch zu der Losung von linearer Slow Feature Analysis (SFA) sind. SFA
ist ein etablierter Algorithmus zur Extraktion von Invarianzen. Damit konnen wir un-
seren Ansatz der optimalen Extraktion von vorhersagender Information mit vorhande-
nen Resultaten in Verbindung setzen.

Im 8. Kapitel fithren wir lineare dynamische Systeme, Systemidentifizierung und
Modellreduktion ein. Eine allgemeine Beschreibung dynamischer Systeme ist durch



die Einfiihrung des Zustandsraums zwischen Input und Output eines Signals gegeben.
Die sogenannten Unterraum basierten Algorithmen der Systemidentifizierung beruhen
auf kanonischer Korrelationsanalyse zwischen Vergangenheit und Zukunft eines Sig-
nals. Wenn dabei der Zustandsraum balanciert normiert wird, also gleiche Gewichtung
beziiglich Input und Output hat, ergibt sich direkt eine attraktive Version der Reduktion
der Modelldimensionen.

Im 9. Kapitel fithren wir den informationstheoretischen Ansatz und die Sichtweise
der dynamischen Systemliteratur zusammen. Die grundlegende Zielfunktion extrahiert
aus der Vergangenheit eines Signals, diejenigen Komponenten, die fiir die Zukunft des
Signals am informativsten sind, wihrend gleichzeitig der Informationsgehalt iiber die
Vergangenheit moglichst niedrig gehalten wird. Wir wenden diese Zielfunktion auf die
konkrete Struktur der Zustandsraumbeschreibung von linearen dynamischen Systemen
an. Als Ergebnis erhalten wir einen kontinuierlich optimalen Tradeoff zwischen Mod-
elkomplexitidt und Genauigkeit (PFIB = Past-Future Information Bottleneck). Dabei
stellt sich heraus, dass mit dieser Methode gleichzeitig eine Unterraum basierte Sys-
temidentifizierung und eine balancierte Modellreduktion vorgenommen wird. Damit
werden die Informationstheorie (angewandt auf zeitliche Signale) und die Theorie dy-
namischer Systeme auf eine tiefgehende Weise miteinander verbunden.

Im letzten Kapitel versuchen wir die beiden Teile dieser Arbeit zusammen zu brin-
gen. Wir wenden den Algorithmus aus Kapitel 9 auf die Vergangenheit und Zukunft
der Grashiipfergesinge an. Wir erhalten eine Reihe von Filtern, die auf verschiedenen
Zeitskalen unterschiedliche Komponenten der Gesédnge extrahieren. Der Vergleich mit
dem auditorischen System des Grasshiipfers regt folgende Hypothese an: Im hierarchi-
schen auditorischen System werden sukzessiv immer langsamere Signalkomponenten
(Iingere Zeitskalen) herausgefiltert. Diese Hypothese und der PFIB-Algorithmus kann
Grundlage fiir kiinftige Experimente an und Modellen von auditorischen Systemen
hoherer Tiere und Programme zur Spracherkennung sein.
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